Calixarene assembly with enhanced photocurrents using P(SNS-NH2)/CdS nanoparticle structure modified Au electrode systems


Sayin S., Azak H., Yildiz H. B., ÇAMURLU P., Akkus G. U., Toppare L., ...Daha Fazla

PHYSICAL CHEMISTRY CHEMICAL PHYSICS, cilt.17, sa.30, ss.19911-19918, 2015 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 30
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1039/c5cp01932j
  • Dergi Adı: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.19911-19918
  • Akdeniz Üniversitesi Adresli: Evet

Özet

Two novel calix[n] arene-adorned gold electrodes producing high photocurrent intensities were successfully constructed by embedding gold electrode surfaces with both P(4-(2,5-di(thiophen-2-yl)-1H- pyrrol-1-yl)benzenamine) conducting polymer and 4-mercaptoboronic acid-functionalized semiconductor CdS nanoparticles to facilitate the binding of calix[n]arene sulfonic acids with nanoparticles. This structure enabled an electron transfer cascade that both induced effective charge separation and efficiently generated photocurrent. The prepared electrodes were used to generate photocurrent by relying on the host-guest interactions of guests Br-3(-) and I-3(-), which if positioned well in the system was able to fill electron-hole pairs of CdS nanoparticles. As a result, host calixarene derivatives crucially held Br-3(-) and I-3(-) ions at a substantial distance from CdS nanoparticles. Furthermore, the effects of various calixarenes on the photocurrent obtained indicate that the generation of photocurrent intensities by the system depends on the cavity sizes of calixarene derivatives, which provide an essential center for Br-3(-) and I-3(-) ions.