Fabrication of sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide nanocomposite for electrochemical monitoring of 4-aminophenol


Buledi J. J. A., Solangi A. R., Hyder A., Batool M., Mahar N., Mallah A., ...Daha Fazla

Environmental Research, cilt.212, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 212
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.envres.2022.113372
  • Dergi Adı: Environmental Research
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, Computer & Applied Sciences, EMBASE, Environment Index, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Chemically modified sensors, Environmental monitoring, Phenolic compounds, PVA/WO3/rGO nanocomposite
  • Akdeniz Üniversitesi Adresli: Evet

Özet

© 2022 Elsevier Inc.4-aminophenol (4-AP) is one of the major environmental pollutants which is broadly exploited as drug intermediate in the pharmaceutical formulations. The extensive release of 4-AP in the environment without treatment has become a serious issue that has led several health effects on humans. This work describe the determination of 4-AP through a new chemically modified sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide (PVA/WO3/rGO) nanocomposite. The fabricated nanocomposite was characterized through XRD and HR-TEM to confirm the crystalline structure with average size of 35.9 nm and 2D texture with ultra-fine sheets. The electrochemical characterization of fabricated sensor was carried out by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to ensure the charge transfer kinetics of modified sensor that revealed high conductivity of PVA/WO3/rGO/GCE. Under optimized conditions e.g. scan rate 80 mV/s, phosphate buffer (pH 6) as supporting electrolyte and potential window from −0.2 to 0.8 V, the prepared sensor showed excellent response for 4-AP. The linear dynamic range of developed method was optimized as 0.003–70 μM. The LOD of fabricated sensor based on PVA/WO3/rGO/GCE for 4-AP was calculated as 0.51 nM. The practical application of PVA/WO3/rGO/GCE was tested in real water and pharmaceutical samples. The fabricated sensor presented here, exhibited exceptional stability and sensitivity than the reported sensors and could be effectively used for the monitoring 4-AP without interferences.