Process Biochemistry, cilt.157, ss.42-55, 2025 (SCI-Expanded)
Styrax liquidus (SL), a balsam from Liquidambar orientalis Mill., possesses high antioxidant, anti-inflammatory, anti-ulcer, and anti-cancer properties but is limited in food and medicine applications due to the immiscibility, high molecular size, and unable to pass the lipid membranes of the cells. Nano-delivery systems enhance bioavailability, stability, and controlled release of bioactive compounds. In this study, SL-loaded poly(ε-caprolactone) (PCL+SL) nanoparticles were manufactured by nanoprecipitation (NP) and flash nanoprecipitation (FNP) methods. Characterizations included size, PDI, zeta potential, morphology, encapsulation efficiency, and in vitro digestion release studies. SL concentration influenced nanoparticle properties, with FNP yielding efficient and size-controlled particles more readily. Spherical-smooth nanoparticles were produced within size ranges of 220–510 nm for NP and 171–383 nm for FNP, with narrow size distribution PDI (0.2 %). High encapsulation efficiencies and sustained gastric release (69–75 %) with low oral release (1.59–2.88 %) were observed. Optimal formulations showed a gastroprotective effect with high urease inhibition rates in range of 55.80 % - 54.69 % at 0.2 mg/mL concentration. An increased cytotoxicity effect of SL (IC50 of 15.8 µg/mL, 81 % p < 0.0001) against AGS human gastric adenocarcinoma cells, followed by PCL+SL nanoparticles which have potential as “a delivery vehicle” in cancer treatment.