Impact properties of 3D-printed engineering polymers

TEZEL T., Ozenc M., KOVAN V.

MATERIALS TODAY COMMUNICATIONS, vol.26, 2021 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 26
  • Publication Date: 2021
  • Doi Number: 10.1016/j.mtcomm.2021.102161
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, INSPEC
  • Keywords: Mechanical properties, Izod impact test, 3D Printing, Layer thickness, Print orientation
  • Akdeniz University Affiliated: Yes


Additive manufacturing of materials, also known as 3D Printing, is a dynamically evolving technology. The effects of layer thickness (0.1, 0.2, 0.3, 0.4, 0.5 mm) and print orientation (upright, flatwise, edgewise) on acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), glycol-modified polyethylene terephthalate (PET-G), and polycarbonate (PC) materials were explored in this study investigating the impact strength of engineering plastics produced by additive manufacturing. As a result of impact testing and fracture surface examinations, it was revealed that the material most affected by the change in layer thickness was PC, followed by PET-G, ABS, and PLA. The highest impact strength was achieved for PC with a layer thickness of 0.3 mm, while PLA exhibited the lowest strength. The lowest impact strength results by print orientation were achieved for the upright orientation.