In vitro and in silico cholinesterase inhibitory and antioxidant effects of essential oils and extracts of two new Salvia fruticosa mill. cultivars (Turgut and Uysal) and GC-MS analysis of the essential oils


Abacı N., Senol Deniz F. S., Ekhteiari Salmas R., Uysal Bayar F., Turgut K., Orhan I. E.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH, cilt.33, ss.1-13, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 33
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1080/09603123.2022.2163988
  • Dergi Adı: INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, CINAHL, Educational research abstracts (ERA), EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, MEDLINE, Pollution Abstracts, Veterinary Science Database
  • Sayfa Sayıları: ss.1-13
  • Anahtar Kelimeler: Salvia fruticosa, cholinesterase, essential oil, molecular docking, enzyme inhibition
  • Akdeniz Üniversitesi Adresli: Evet

Özet

The EtOH extracts of the leaves of two new cultivars (Uysal-SFU and Turgut-SFT) of Salvia fruticosa Mill. was tested against acetylcholinesterase (IC50: 30.62 ± 3.27 and 32.97 ± 2.33 µg/mL for SFU and SFT, respectively) and butyrylcholinesterase (IC50: 69.91 ± 1.08 µg/mL and 86.55 ± 1.26 µg/mL), respectively, relevant to Alzheimer’s disease. The essential oils showed a stumpy inhibition against AChE and no inhibition against BChE. DPPH radical scavenging activity of the extracts (86.70 ± 0.17% and 86.14 ± 1.13% for SFU and SFT, respectively) was stronger than that of quercetin (85.51 ± 0.17%): Their (1.24 ± 0.05 and 1.04 ± 0.16 for SFU and SFT, respectively) ferric-reducing antioxidant power were close to that of the reference (e.g. quercetin, 1.42 ± 0.14). Molecular docking simulations were performed on their major monoterpenes. Our findings revealed that the leaf EtOH extracts of two cultivars are promising inhibitors of both AChE and BChE.