EXPERIMENTAL GERONTOLOGY, cilt.138, 2020 (SCI-Expanded)
Telomeres are repetitive DNA sequences localized at the ends of eukaryotic chromosomes, and shorten during ovarian aging. The molecular background of telomere shortening during ovarian aging is not fully understood. As the telomerase components (TERT and Terc) and telomere-associated proteins (TRF1, TRF2, and POT1a) play key roles in the elongation and maintenance of telomeres, we aimed to determine their spatial and temporal expression and cellular localization in the mouse ovaries at the different ages of postnatal life. For this purpose, five groups were generated based on the ovarian histological changes in the postnatal mouse ovaries as follows: young (1- and 2-week-old; n = 3 from each week), prepubertal (3- and 4-week-old; n = 3 from each week), pubertal (5- and 6-week-old; n= 3 from each week), postpubertal (16- and 18-week-old; n= 3 from each week) and aged (52-, 60- and 72-week-old, n = 3 from each week). We found significant changes for the Tert, Terc, Trf1, Trf2, and Pot1a genes expression in the postnatal ovary groups from young to aged (P < 0.05) as well as in the follicles from primordial to antral stages and their oocytes and granulosa cells. Also, we have detected gradually decreasing telomere length from young to aged groups (P < 0.001). In conclusion, the altered Tert, Terc, Trf2, and Pot1a genes expression compatible with telomere shortening may be associated with ovarian aging.