BY ANALYSIS OF MOMENTS OF GEOMETRIC DISTRIBUTION: NEW FORMULAS INVOLVING EULERIAN AND FUBINI NUMBERS


Simsek B., Kilar N.

Applicable Analysis and Discrete Mathematics, cilt.19, sa.1, ss.233-252, 2025 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 19 Sayı: 1
  • Basım Tarihi: 2025
  • Doi Numarası: 10.2298/aadm240518025s
  • Dergi Adı: Applicable Analysis and Discrete Mathematics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.233-252
  • Anahtar Kelimeler: Apostol-Bernoulli polynomials and numbers, Characteristic and generating functions, Eulerian and Fubini numbers, Phrases. Geometric distribution and moments, Stirling numbers
  • Akdeniz Üniversitesi Adresli: Evet

Özet

The aim of this paper is to find new moment formulas for geometric distribution by using moments of the geometric distribution in terms of Apostol-type and Bernstein polynomials, and Fubini and Eulerian numbers, etc. A new generating function for moments of the geometric distribution is constructed. New sequences of special numbers with their recurrence relations are given. In order to compute values of these sequences and moments, codes in Wolfram language are given.