Intelligent pixels of interest selection with application to facial expression recognition using multilayer perceptron


Creative Commons License

Danisman T., Bilasco I. M., Martinet J., Djeraba C.

SIGNAL PROCESSING, cilt.93, sa.6, ss.1547-1556, 2013 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 93 Sayı: 6
  • Basım Tarihi: 2013
  • Doi Numarası: 10.1016/j.sigpro.2012.08.007
  • Dergi Adı: SIGNAL PROCESSING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1547-1556
  • Anahtar Kelimeler: Facial expression recognition, Multi layer perceptron, Feature selection, NONNEGATIVE MATRIX FACTORIZATION, GRADIENT-METHOD, FACE, CLASSIFICATION
  • Akdeniz Üniversitesi Adresli: Hayır

Özet

This paper presents an automatic way to discover pixels in a face image that improves the facial expression recognition results. Main contribution of our study is to provide a practical method to improve classification performance of classifiers by selecting best pixels of interest. Our method exhaustively searches for the best and worst feature window position from a set of face images among all possible combinations using MLP. Then, it creates a non-rectangular emotion mask for feature selection in supervised facial expression recognition problem. It eliminates irrelevant data and improves the classification performance using backward feature elimination. Experimental studies on GENKI, JAFFE and FERET databases showed that the proposed system improves the classification results by selecting the best pixels of interest. (C) 2012 Elsevier B.V. All rights reserved.