Current Issues in Molecular Biology, cilt.45, sa.1, ss.663-676, 2023 (SCI-Expanded)
Earliness in crop plants has a vital role in prevention of heat-induced drought stress and in combating global warming, which is predicted to exacerbate in the near future. Furthermore, earliness may expand production into northern areas or higher altitudes, having relatively shorter growing season and may also expand arable lands to meet global food demands. The primary objective of the present study was to investigate quantitative trait loci (QTLs) for super-earliness and important agro-morphological traits in a recombinant inbred line (RIL) population derived from an interspecific cross. A population of 114 RILs developed through single-seed descent from an interspecific cross involving Pisum sativum L. and P. fulvum Sibth. et Sm. was evaluated to identify QTLs for super-earliness and important agro-morphological traits. A genetic map was constructed with 44 SSRs markers representing seven chromosomes with a total length of 262.6 cM. Of the 14 QTLs identified, two were for super-earliness on LG2, one for plant height on LG3, six for number of pods per plant on LG2, LG4, LG5 and LG6, one for number of seeds per pod on LG6, one for pod length on LG4 and three for harvest index on LG3, LG5, and LG6. AA205 and AA372-1 flanking markers for super-earliness QTLs were suggested for marker-assisted selection (MAS) in pea breeding programs due to high heritability of the trait. This is the first study to map QTLs originating from P. sativum and P. fulvum recently identified species with super-earliness character and the markers (AA205 and AA372-1) linked to QTLs were valuable molecular tools for pea breeding.