COMMUNICATIONS IN ALGEBRA, vol.32, no.10, pp.3911-3919, 2004 (SCI-Expanded)
In this paper, the authors give a partial characterization of invertible, dense and projective submodules. In the final section, they give the equivalent conditions to be invertible, dense and projective submodules for a given an R-module M. They also provide conditions under which a given ring R is a Dedekind domain if and only if every non zero submodule of an R-module is locally free.