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Aquaculture has grown tremendously due to the big demand for its products. However, 
diseases affecting aquaculture and economic losses are worldwide problems and it needs 
low cost, sustainable, highly efficient, specific and eco-friendly therapeutants. Due to the 
rising up antibiotic resistant-microorganism, bacteriophage therapy has reinvigorated to 
replace antibiotics in agriculture, medicine, food safety and the environment. Likewise, it 
also holds great promise to avoid, control and treat bacteria in aquaculture to decrease 
the mortality level of different aquatic animal diseases. The isolation and 
characterization of new phages and phage application therapy to eliminate bacterial fish 
and shellfish pathogens such as Vibrio, Aeromonas, Pseudomonas, Lactococcus, Yersinia, 
Flavobacterium, and Streptococcus was gradually reported in aquaculture literature. The 
present review summarizes large-scale reports in vitro or in vivo use of aquaphage studies 
and applications in fish diseases from the 1980s to 2022 and future directions. 

INTRODUCTION 

Aquaculture is a rapidly growing industry worldwide, from 
which people derive about 50% of their animal protein re-
quirements.1 As the Food and Agriculture Organization re-
ported in 2020, aquaculture production in 2030, which pro-
vides about 1/3 of the world’s aquaculture resources, is 
estimated to rise to 53%.2 In addition to fish, species such 
as carp, tilapia, and trout and aquatic organisms such as 
oysters, clams, and shrimps are grown in aquaculture in 
fresh and marine waters.3 

However, aquaculture suffers from heavy financial losses 
every year globally because of viral, fungal, parasitic, and 
bacterial disease outbreaks at any stage of the breeding 
process.4‑7 The same bacterial pathogens detected disease 
agents in aquatic organisms: Gram-negative Aeromonas 
salmonicida, A. hydrophila, Pseudomonas plecoglossicida, Ed-
wardsiella tarda, E. piscicida, E. ictaluri, Vibrio spp. (V. har-
veyi, V. parahaemolyticus, V. anguillarum, V. splendidus, V. 
alginolyticus, V. coralliilyticus), Flavobacterium columnare, F. 
psychrophilum, Yersinia ruckeri and Gram-positive Lactococ-
cus garvieae, Renibacterium salmoninarum, Streptococcus 
iniae, Mycobacterium species.8,9 These bacterial pathogens 
that are easily transmitted through water in case of ex-
ternal stressors, including intensive stock densities, inad-
equate nutrition, build-up of toxic chemicals, poor water 
quality, and low oxygenation, can therefore infect many 
aquatic organisms. 

Various strategies, including probiotics, prebiotics, im-
munostimulants, and vaccination, have increased fish de-
fense and prevented bacterial diseases.10,11 However, vac-
cine administration methods and routes vary depending 
on species, quantity, size of organisms, pathogens, tem-
perature, and environment.12,13 Therefore, vaccination be-
comes a tedious job for large-scale aquaculture systems. 
Also, vaccines may not be as effective against larvae and in-
vertebrates without a robust immune system.14 Of the bio-
cides, malachite green is used in the treatment of protozoal 
and fungal infections, while formaldehyde and formalin so-
lutions are prophylactic disinfectants for eggs and larval 
development. 
The use of amoxicillin, oxytetracycline, sulfonamides, 

tetracyclines, nitrofurans, fluoroquinolones, and florfenicol 
among antibiotics as a therapeutic agent is also the most 
preferred method to inhibit the growth of bacteria and stop 
heavy mortalities during outbreaks of infectious bacterial 
diseases in aquaculture and fisheries.8,13,15 Although they 
are rapid, effective and commenly used for bacterial infec-
tion of aquaculture and agriculture, antibiotics generally 
target both pathogenic and non-pathogenic microflora of 
the environment. In additional, their long-term and heavy 
use caused a number of unfavourable impacts such as ac-
cumulation and toxicity in organisms, occurence of an-
tibiotic-resistant bacterial strains and suppression of the 
immune response of the host, thus increasing the ineffec-
tiveness of antibiotic treatments.9,11,13,16 The above dis-
advantages of antibiotics have prompted the development 
of species-specific, eco-friendly and less expensive way to 
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prevent bacterial infectious diseases in sustainable aqua-
culture.3,7 In search of alternative tool or a possible solu-
tion, the use of bacteriophages seems to be very promis-
ing and appropriate strategy as approached “post-antibiotic 
era” as the World Health Organisation (WHO) announced in 
different diseases of animals.17‑22 

This review mainly focuses on and summarizes extensive 
research literature in the last 40 years and future directions, 
with many different bacteriophages and its applications 
and outcomes as alternative ways, due to overuse of antibi-
otics, to prevent, control and treat diseases in aquatic or-
ganisms (such as crustaceans, molluscs and fish) and their 
environment. 

PHAGE MORPHOLOGY 

The bacteriophages, also known as phages (meant to imply 
“eat” or “devour” in Greek), are very small bacterial viruses 
that can range in size from 20 to 200 nm, are host-specific, 
and can only infect and kill targeted bacteria, without 
harming the surrounding microbiota and animal or plant 
cells.23‑25 Diverse phages can be found in all environments 
that are abundant in nature, such as river and seawater, 
sediments, soil, sewage, and food products, and were also 
readily detected in human and animal feces/urine.26‑28 

The taxonomy and three-dimensional structure of typ-
ical phage morphology is well defined. It is classified ac-
cording to their general morphology, the presence of outer 
envelope and lipid structures, and the type of genome that 
is in the form of ssRNA, dsRNA, ssDNA and dsDNA.17,29‑31 

According to this approach, the International Committee 
for Taxonomy of Viruses (ICTV) identified 14 distinct and 
well-characterized phage families: Myoviridae, Podoviri-
dae, Siphoviridae, Microviridae, Inoviridae, Herelleviridae, 
and Ackermannviridae, as shown in Table 1 . Table 1 has 
been prepared according to information from Acherman32,
33 and Sharp et al.34 

The phage genome is enclosed in a protein capsid head 
(e.g., filamentous, helical, icosahedral, pleomorphic, and 
polyhedral), a tail with spiral sheath and tail fibers and 
surface receptors responsible for recognizing specific host 
bacterial molecules and attaches themselves to the cell’s 
surface.35,36 These phages, which cannot perform their 
molecular replication under normal conditions, now use 
the host mechanism to reproduce themselves after their 
genome is injected into the bacterial host. They take over 
the bacterial biosynthesis control mechanism and com-
mand the bacterial host to produce different viral proteins 
and release progeny and phages that can continue to infect 
other hosts. 

PHAGE LIFE CYCLE 

Phages can multiply and propagate by infecting bacteria in 
2 paths: 1) lytic life cycle (virulent) and 2) lysogenic life cy-
cle (temperate-dormant). The first phage cycle, which lasts 
between 20 minutes and 2 hours, begins when phages at-
tach to the host, integrate their genetic material, and con-
tinue to multiply to produce viral progeny. The virulent 

phages will control the host’s protein. This cycle results in 
the secretion of lysins and holins enzymes by phages, ly-
sis of the host bacterial cell membrane, and releasing the 
newly formed progeny virions into the environment. Af-
terward, the new progenies infect different host bacteria. 
The lysogenic (temperate) phages, in contrast, attach their 
genome to the host’s and remain in a dormant and stable 
stage for a long time until environmental conditions are fa-
vorable for the rapid growth of new prophages.36‑42 There-
fore, lytic phages that proliferate exponentially and damage 
the pathogenic host in any case of antibiotic resistance sta-
tus are more amenable to developing therapeutic intent. 

PHAGE HISTORY AND THEIR POTENTIAL 
APPLICATIONS 

Phages therapy first came onto the scientific domain about 
a hundred years ago after finding by Twort43 and 
d’Herelle,44 respectively.23,40,45‑48 Phage has been used 
successfully to treat severe hemorrhagic Shigella dysentery 
among French troops patients and against cholera by Vibrio 
cholera in India.30,31,49,50 Bruynoghe and Maisin51 re-
ported phage therapy treatment of staphylococcal skin dis-
ease. The first commercial phage in history was the anti-
choline phage, successfully used to control the epidemic 
that threatened the southeastern regions of the Soviet 
Union (SSCB) and then Georgia in 1931.52 In the 1930s and 
1940s, the phage therapy application against mixed bacte-
ria caused by Clostridium perfringens, Staphylococcus, Strep-
tococcus, Escherichia coli and Proteus species were tested 
in Poland, Belarus, Georgia, Russia, Ukraine, and Azerbai-
jan.23,53 Concurrent with the advent of commercial antibi-
otics in the 1940s, there was a huge decline in using phages 
as therapeutic agents in Western countries and the United 
States. However, in the period from the 1950s to late 1970s, 
the SSCB and in East Europe continued using the phage 
treatment against S. typhi and S. paratyphi and phage for 
prophylaxis in the fast spread of infections occurred such 
as military and schools.54,55 In the 1980s, Smith et al.56 

showed that E. colidiarrhea in calves could be treated with 
phage, and this successful result then prompted the West to 
explore the possibility that phages could be used in human 
infections as well. 
Because of the occurrence of multi-antibiotic-resistant 

bacteria, phages have been reappraised in the last two 
decades and are at the forefront again as therapeutic/pro-
phylactic agents against human infectious diseases,18,42,
57‑60 aquaculture,15,61‑63 agriculture, animal and plant 
pathogens,40,64,65 food23,36,66; wastewater31,67,68 and 
other subjects like biofilm removers69,70 and biosensor.71 

Multiple studies on using phages in animal agriculture have 
explored Salmonella, E. coli, Clostridium, and Campylobacter 
for the pig, chicken, cattle, and sheep industries.22,72,73 

Figure 1  summarizes phage applications in different areas. 
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Table 1. Morphology and genome characteristics of the fourteen phage families          

PHAGE APPLICATIONS IN FISH DISEASES AND 
AQUACULTURE 

The aquaculture and farmed fish industry have high mor-
tality rates and considerable economic losses because of 
certain microbial infectious diseases. Widespread bacterial 
fish diseases are aeromonasis, hemorrhagic septicemia, fu-
runculosis, vibriosis, edwardsiellosis, mycobacteriosis, ul-
cer disease, columnaris, lactococcosis, enteric red mouth 
disease, fry syndrome, and cold-water disease, respec-
tively.8 Phages were used to control and prevent bacterial 
infections caused by antibiotic-resistant bacteria at the lab-
oratory level or in small-scale trials for field applications in 
aquaculture. 
The essential step in aquatic phage therapy is identifying 

the fish disease agent and then detecting and isolating 
the phage that can effectively infect the host bacteria. The 
phage and bacteria interactions are essential to inactivate 
possible aquatic pathogens. Phages can interact with hosts 
bacteria to the lytic cycles, replicate their genome, and pro-
duce new phages that let out bacterial cell lysis into ponds, 
lakes, seas, rivers, and sewage, infecting new bacterial cells. 
New phages are exponentially replicated, and the num-

ber of bacteria decreases and disappears. Figure 2  is an 
overview of the steps of phage application in aquaculture. 
Our literature review screened numerous google scholar 

publications from 1997 to 2022 when typed in “Bacterio-
phages, aquaculture, and twelve fish pathogens” as the key-
words (Figure 3 ). And as shown in the bar graph, the num-
ber of research studies on phage therapy applications in 
aquaculture has gradually increased worldwide for twelve 
bacterial agents. 
There is a selection of studies on the genetic/morpho-

logic identification, characterization of phages, and the ef-
fectiveness of different phages for biocontrol and treatment 
in eggs, larvae, juveniles and adult fish and shrimp, other 
aquatic organisms, and aquaculture food products. 
In addition, numerous reviews have reported that the 

most studied phage families are Myoviridae, Podoviridae, 
and Siphoviridae as virulence and control tool against a 
wide variety of pathogens, A. salmonicida, A. hydrophila, 
E. tarda, Y. ruckeri, V. harveyi, V. parahaemolyticus, V. an-
guillarum, V. alginolyticus, F. columnare, F. psychrophilum, L. 
garviae and S. iniae, in vitro or in vivo.9,11,15,21,30,41,74‑79 

Bacteriophage applications in aquaculture

Israeli Journal of Aquaculture - Bamidgeh 3

https://ija.scholasticahq.com/article/78119-bacteriophage-applications-in-aquaculture/attachment/164064.png


Figure 1. Illustration of phage applications in human, aquaculture, food, agriculture, and environment            

A list of reported phage applications and outcomes 
against the most significant bacterial pathogens in aqua-
culture from 1981 to 2022 is shown in Table 2 . 
The result of summarized studies in Table 2 using 

phages specific to 12 fish diseases agents as direct or sus-
pensions of single or cocktail, oral administration, injec-
tions, or as aquafeed174‑176 recommend that phages could 
be beneficial to prevent and treat bacterial infections of 
aquatic animals. Even though different methods are used, 
the literature indicates that the most prophylactic impact 
appears when administered intraperitoneally (Americo et 
al., 2020). Additionally, in recent years, the other practical 
way was using commercial phages developed and used 
against some pathogens of aquaculture.41,177 For example, 
Intralytix and Phage Biotech Ltd have developed phages to 
destroy Vibrio spp. in oyster and shrimp aquaculture,178,179 

Phage named BAFADOR® registered by Proteon pharma-
ceutical against Aeromonas spp. and Pseudomonas spp.180,
181 ACD Pharma has developed phage solutions against Y. 
ruckeri.182 Fixed Phage Ltd. has developed aquafeed-phage 
pellets.183 Mangalore Biotech Laboratory has also devel-
oped LUMI-NIL MBL to control pathogens in shrimp.184 

The first research on phage therapy used in aquaculture 
was notified by Wu and co-workers in 1981 as the patho-
genicity loss of A. hydrophila to loach (M. anguillicaudatus), 
in which Ah1 phage infected the pathogen.88 Numerous 
studies have declared the accomplished use of more than 
35 A. hydrophila phages aiming to control motile Aeromonas 
and septicemia from 1981 to 2022 (Table 2 ).40,90,92,93,
96‑105,175,185,186 

Around 22 phages with treatment activity against A. 
salmonicida (caused furunculosis) have been identified and 
characterized from farm fish (Table 2 ).26,80‑87 

Four phages named PLgY-16, PLgY-30, and PLgW-1 were 
used to treat L. garvieae infection in yellowtail (S. quin-
queradiata)150,151(p1998) and P. plecoglossicida infection in 
ayu (P. altivelis)61,152 in the 1990s. 
From 2000 to 2022, more lysogenic phages named 

PLgT-1, PLgY-30, PLG-II, and WWP-1 were involved in L. 
garvieae infection colonizing marine fish, S. quinqueradiata, 
S. dumerili, S. lalandi, O. mykiss (Table 2 ).149‑155 

Several phages for controlling F. columnare, which 
causes Columnaris disease in fish like Clarias batrachus and 
O. Mykiss, were isolated genetically and characterized.166 
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Table 2. Morphology and genome characteristics of the fourteen phage families          

Etiologic agent Disease Phage/Phages 
Cocktails 

Fish/shellfish/
shrimp species 

Outcomes References 

Aeromonas 
salmonicida 

Furunculosis HER 110 Oncorhynchus 
fontinalis 

Use of bacteriophages has the potential to prevent of furunculosis in 3 
days and to minimize the development of phage-resistant strains of 
A.salmonicida. 

Imbeault et al.26 

Furunculosis O, R, B Salmo salar Phages were used orally, bath treatment and injection for therapy to 
A.salmonicida challenged fishes, but no protection was offered by any of 
the bacteriophage treatments. 

Verner-Jeffreys et al.80 

Furunculosis PAS-1 O.mykiss Phage PAS-1 showed efficient bacteriolytic activity. In tank experiments, 
the administration of infected fish exhibited notable protective effects 
and increasing survival rates. 

Kim et al.81; 2015 

Furunculosis AS-A Solea 
senegalensis 

Results showed that after 6 h of treatment the phage inhibited the growth 
of A.salmonicida both in batch cultures and seawater in the presence of 
fish juveniles. 

Silva et al.82 

SW69-9, L9-6, Riv-10 Fish A new classifcation scheme for A.salmonicida phages. Vincent et al.83 

Furunculosis AS-A, AS-D, AS-E - Phage cocktails developed phage cocktails reduced the population of 
A.salmonicida faster than single suspensions. 

Duarte et al.84 

Furunculosis AS-szw, AS-yj, AS-zj, 
AS-sw, AS-gz 

- In vitro investigations into phages are prerequisite to obtain satisfying 
phage cocktails prior to application in practice. 

Chen et al.85 

Furunculosis ASP-1 Carassius 
auratus 

ASP-1 phage was isolated and 
characterized. Phage was stable over wide-range of temperatures, pH and 
salinity. ASP-1 showed 30 min of latent period, 16 PFU/infected cells of 
burst size and 40 min of rise period. 

Nikapitiya et al.86 

Furunculosis vB_AsM_ZHF, ZHA, 
ZHD 

Scophthalmus 
maximus 

3 A.salmonicida subsp. masoucida phage isolates from sewage, and 
vB_AsM_ZHF exhibited the best antibacterial effect, based on in vitro 
sexperiment. 

Xu et al.87 

A.hydrophila Motile 
Aeromonas, 
Hemorrhagic 
septicemia 

AH1 pond water First isolation of AH1 phage. Wu et al.88 

Motile 
Aeromonas 

pAh1-C, pAh6-C Misgurnus 
anguillicaudatus 

Phages showed efficient bacteriolytic activity against fish-pathogenic 
A.hydrophila from loaches. The latent periods of the phages were 
estimated to be approximately 30 min (pAh1-C) and 20 min (pAh6-C). 

Jun et al.89 

Motile 
Aeromonas 

φZH1 and φZH2 Oreochromis 
niloticus 

ΦZH1 and ΦZH2 administered via injection was found to be effective in 
treating fish infected with A.hydrophila shown through the significant 
decrease in number of A.hydrophila found in the water of treated fish. 

El-Araby et al. 2016 

Motile 
Aeromonas 

pAh-1 Danio rerio pAh-1 as a lytic phage that strongly attacks the pathogenic A.hydrophila 
and higher survival rate of zebrafish. 

Easwaran et al.90,91 
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Etiologic agent Disease Phage/Phages 
Cocktails 

Fish/shellfish/
shrimp species 

Outcomes References 

Motile 
Aeromonas 

AP1, AP2, AP3,AP4 O.niloticus Results achieved 94% elimination of A.hydrophila comparing to phage 
infectivity under basal conditions. In vivo efficiency of AP2 against 
A.hydrophila invading the aquaria of Nile tilapia was investigated. 
Elimination of A.hydrophila in the rearing water was detected after 24h. 

Hassan et al.92 

Motile 
Aeromonas 

φF2, φF5 Pangasianodon 
hypophthalmus 

Phage treatments applied to bacterial strains during infestation of catfish 
resulted in the survival rates of the tested fishes, with up to 100% 
compared to 18.3% survival observed in control experiments. 

Le et al.93 

Motile 
Aeromonas 

TG25P, CT45P P.hypophthalmus TG25P and CT45P were subjected to the phage cocktail to inactivate 
A.hydrophila. 

Hoang et al.94 

Motile 
Aeromonas 

PVN02 P.hypophthalmus Confirmed that PVN02 is a novel lytic phage that could potentially be 
used as an agent to control A.hydrophila in striped catfish. 

Tu et al.95,96 

Motile 
Aeromonas 

Akh-2 Misgurnus 
anguillicaudatus 

Isolated two phages that can infect A.hydrophila from seawater, isolation 
of more phages is promising, further isolation, characterization and 
application of A.hydrophila. 

Akmal et al.97 

Motile 
Aeromonas 

MJG O.mykiss MJG had activity at temperature 10 °C between 60 °C and pH 2 to10, and 
its latent and rise periods were 30 and 40 min. MJG treatment would 
restore liver tissue damages and abolish the clinical signs of infection. 

Cao et al.98 

Motile 
Aeromonas 

pAh6.2TG O.niloticus The pAh6.2TG was highly specific to A.hydrophila and infected 83.3% 
tested strains of MDR A. hydrophila (10 out of 12) with relative stability at 
pH 7-9, temperature 0-40◦C and salinity 0-40 ppt. 

Dien et al.99 

Motile 
Aeromonas 

PVN02 P.hypophthalmus Without the existence of the phage, the highest mortality rate was 68.3 at 
the highest density of bacterial suspension and mortality rate at the 
highest density of bacterial suspension was significantly reduced to 8.33 ± 
2.9% or 16.67 ± 2.9% at the phage dose of log 6.2 ± 0.09 or log 4.2 ± 
0.09PFU/g. 

Dang et al.100 

Motile 
Aeromonas 

AH-1, AH-4, and 
AH-5 

Cerastoderma 
edule 

All phages were effective against A.hydrophila, but phage AH-1 (with a 
maximum reduction of 7.7 log colonies forming units CFU/mL. 

Duarte et al.101 

Motile 
Aeromonas 

PZL-Ah1and PZL-Ah8 Aquatic amimal PZL-Ah1 and PZL-Ah8 were isolated and used to decrease infection. Yu et al.102 

Vibriosis Ahy-Yong1 Cyprinus aka Koi It is stable at 30–40 ◦C and at pH 2–12. Ahy-yong1 revealed an effective 
biofilm removal capacity and an obvious protective effect in brocade carp. 
In vitro and in vivo experiments demonstrated ahigh antibacterial rate of 
Ahy-yong1 against A.hydrophila. 

Pan et al.103 

A.hydrophila and 
P.fluorescens 

Motile 
Aeromonas 

50AhydR13PP, 
60AhydR15PP, 
25AhydR2PP, 
22PfluR64PP, 
67PfluR64PP, 

O.mykiss The use of mixed phages increased the activity of lysozyme, total protein 
and immunoglobulin level. Ceruloplasmin level in the fish serum remained 
unchanged. Killing and metabolic activity of spleen phagocytes and 
proliferation of pronephros lymphocytes were higher compared to the 
control group. 

Schulz et al.104 
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Etiologic agent Disease Phage/Phages 
Cocktails 

Fish/shellfish/
shrimp species 

Outcomes References 

71PfluR64PP, 
98PfluR60PP 

A.punctata Septicemia, 
diarrhea, 
wound 
infections 

IHQ1 Stream water Characterization of phage IHQ1 showed that it was very efficient in lysing 
A.punctata, combined with its outstanding thermal and pH stability; 

Haq et al.40 

A.hydrophila and 
Edwardsiella tarda 

Hemorrhagic 
septicaemia, 
Edwardsiellosis 

A1,A2,E1,E2,T1,T2 Anguilla japonica Phages decreased the bacterial host after 2 hours. In pond water, phage 
treatment reduced 250-fold the A.hydrophila population in 8 h, while 
phage population increased 

Hsu et al.105 

E.tarda Edwardsiellosis G1, G7, G8, G9.2 P.hypophthalmus Phages latent period were 55-70 min and 28-160 PFU/cell. E.ictaluri was 
challenged in vitro in broth and was inactivated by single phage for 18-20 
h. 

Hoang and Pham94 

Edwardsiellosis ET-1 Anguilla japonica Phages for phage typing of E.tarda could not be found because175 strains 
of E. tarda used in this study were divided into 15 phage types by 8 strains 
of phages and 87 strains of E.tarda were not sensitive to the phages. 

Wu and Chao106; 
Yamamoto and 
Maegawa107 

Edwardsiellosis ETP-1 D.rerio Zebrafish was bath exposed for 12 days to phage and challenged with 
E.tarda, the survival rate in 4 days. 

Nikapitiya et al.108 

Ascites PETp9, PVHp5 Scophthalmus 
maximus 

The results showed that the abundance of Vibrio species and Edwardsiella 
species in turbot's intestine was significantly reduced by feeding with 
phage cocktails of E.tarda phage PETp9 and V.harveyi phage PVHp5. 

Cui et al109 

Edwardsiellosis phage P.olivaceus E.tarda phages were identified in the seawater before the disease 
outbreak and during the disease prevalence, but not detected after the 
outbreak terminated. 

Matsuoka and Nakai110 

E.ictaluri Septisemia φFeiDWF,φ FeiAU, 
φFeiMSLS 

Channel catfish Three E.ictalurispecific bacteriophages isolated from geographically 
distant aquaculture ponds, at different times, were sequenced and 
analyzed and these bacteriophages are lytic and can be used in infection 
diseases. 

Walakira et al.111; 
Carrias et al.112 

E.piscicida Edwardsiellosis vB_EpM_ZHS, 
vB_EpP_ZHX 

S.maximus Cocktail phage significantly inhibited bacterial growth in vitro and 
decreased approximately 40% of mortality rate and an order of magnitude 
of bacterial burden in zebrafish and turbot infected by E.piscicida. 

Xu et al.113 

Vibrio sp. Vibriosis ValLY-3, VspDsh-1, 
VspSw-1, 
ValSw4-1,VpaJT-1, 

Litopenaeus 
vannamei 

Phage cocktail preparation showed in vitro higher e ciency in inhibiting 
the growth of Vibrio sp. Va-F3 than any single phage. 

Chen et al.114 

Vibrio harveyi Luminescent 
vibriosis 

Viha8, Viha10, Viha9, 
Viha11 

Penaeus 
monodon 

Phage Viha10 was effective in reducing the population of V.harveyi in the 
biofilm and application of phages Viha8 and Viha10 resulted in 85% 
survival of larvae 

Karunasagar et al.115 

Vibriosis Viha 1, Viha 2, Viha 3, 
Viha4, Viha 5, Viha 6, 

Penaeid shrimp Six phages were highly lytic for V.harveyi and they were potential 
candidates for biocontrol of this bacterium. 

Shivu et al.116 
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Etiologic agent Disease Phage/Phages 
Cocktails 

Fish/shellfish/
shrimp species 

Outcomes References 

Viha 7, 

Vibriosis Siphoviridae P.monodon The study concluded tha tbacteriophage has the potential in management 
of luminous vibriosis in aquaculture. 

Vinod et al.117 

Vibriosis VH1, VH8 Shrimp All the isolates of phage caused lysis of the host bacteria within 2 hours. Srinivasan et al.118 

Vibriosis VHM1, VHM2, VHS1 P.monodon Post larval stages of shrimp were treated with bacterium (105 cells/mL) 
first in laboratory trials followed by single phage treatment about 109 
PFU/mL) and phage cocktail treatment about 109 PFU/mL. It can be used 
as a potential alternative treatment for the control V.harveyi in shrimp 

Stalina and Srinivasan119 

Vibriosis VhCCS-01, -02, -04, 
-06, -17, -20, -19, -21 

Panulirus 
ornatus 

The lytic ability of 6 phages suggested that they are appropriate for phage 
therapy. 

Crothers-Stomps et 
al.120 

Vibriosis PVHp5, PVHp8 S.maximus L. Two phages are isolated and feeding phage cocktails may be another 
optimal therapeutic agent against V.harveyi infection in turbot 

Cui et al.121 

Vibriosis PW2 Shrimp Phage performanse depends on temperature and pH. Phage adsorption 
rate increased rapidly in15 min of infection to 80% and continued to 
increase to 90% within 30 min of infection. 

Phumkhachorn and 
Rattanachaikunsopon122 

Vibriosis VHLM P.monodon Phage showed a narrow host range and an apparent preference for 
V.harveyi rather than other 63 isolates and 10 other. 

Oakey and Owens123 

Vibriosis vB_VhaS-a, vB_VhaS Haliotis laevigata Threatment with phages resulted in 70% of survival. Wang et al.124 

V.parahaemolyticus Luminescent 
vibriosis 

pVp-1 Oysters Bath immersion and surface-application of the lytic phage effectively 
reduced the bacterial growth of V.parahaemolyticus. 

Jun et al.125,126 

- vB_VpS_BA3, vB-VpS_ 
CA8 

Sewage In the in vitro phage trial CA8 had the potential for phage therapy. Yang et al.127 

Vibriosis A3S and Vpms1 Litopenaeus 
vannamei 

Phages were reduce the mortality rates of larvae caused by 
V.parahaemolyticus, especially when applied at the early stage (6 h post-
infection). 

Lomelí-Ortega and 
Martínez-Díaz128 

Vibriosis ФVP-1 Penaeid shrimp Ability to infect V.parahaemolyticus and V.alginolyticus and showing also 
biofilm reducing capacity. 

Matamp and Bhat129 

Vibriosis VPp1, VP-1, VP-2 and 
VP-3 

Oysters V. parahaemolyticus in oysters, which decreased by 2.35–2.76 logCFU/g 
within 36 h. 

Rong et al.130; Mateus et 
al.131 

Vibriosis VP93, VpV262 - Phage growth can be modelled if phage-sensitive and resistant cells that 
convert to each other with a high frequency are present in clonal cultures 
of pandemic V.parahaemolyticus. 

Bastías et al.132 

Vibriosis AMN2, FT2, FT3, 
KD1,V1, AMN1, 
AMN3, PL1, V2, V4, 
V5 and V6 

Litopenaeus 
vannamei 

Phage application against V.parahaemolyticus in shrimp showed 78.1% 
reduction in bacterial counts within 1 h. 

Dubey et al.133 
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Cocktails 

Fish/shellfish/
shrimp species 

Outcomes References 

Vibriosis VP1, VP7 and VP P.monodon The cumulative survival rate were 70% after 144 h and others 60–65% . Alagappan et al.134 

Vibriosis PVP1, PVP2 Apostichopus 
japonicus 

Feeding phage cocktails might be another optimal therapeutic agents to 
treat V. parahaemolyticus infections in sea cucumber aquaculture. 

Ren et al.135 

V.anguillarum Vibriosis AS-1 Fish Diseases controlled and efficacy of plating Pereira et al.10 

Hemorrhagic 
septicemia 

ALMED, CHOED, 
ALME, CHOD, CHOB 

Salmo salar Phages infect both V.anguillarum, V.ordalii but not V.parahaemolyticus, 
CHOED phage protect fish against experimentally induced vibriosis 

Higuera et al.136 

Vibriosis PVc-1, PVc-2 Dicentrarchus 
labrax 

Genomic characterization were made by looking at genome size Cagatay137 

Vibriosis KVP40 Gadus morhua L. 
and S.maximus L. 

Phage decreased mortality of cod and turbot larvae in experimental 
challenge assays with V.anguillarum pathogens suggested that phages can 
reduce Vibrio mortality in turbot and cod larvae. 

Rørbo et al.138 

Vibriosis VP-2, VA-1 D.rerio Phage therapy is a suitable alternative approach against vibriosis in Zebra 
fish larvae. 

Silva et al.139 

V.alginolyticus Vibriosis φSt2 and φGrn1 Marine fish, live 
feeds (Artemia) 

Phage cocktail live prey A.salina, led to93% decrease of Vibrio population 
after 4 h of treatment in fish hatcheries. 

Kalatzis et al.140 

Vibriosis VEN - These results suggest that VEN may provide a good candidate to control 
recurrent diseases caused by V.alginolyticus. 

Kokkari et al.141 

V.coralliilyticus Coral diseases YC Acropora 
millepora 

Phage has isolated and identified a effective against the coral pathogen 
V.coralliilyticus 

Cohen et al.142 

Mortality of 
larvae 

pVco-14, pVco-5, 
pVco-7. 

Crassostrea gigas Higher survival rate in phage-treated oyster larvae Kim et al.143,144 

V.splendidus Skin ulcer vB_VspP_pVa5 Fish The phage showed a huge bactericidal activity and proposed as potential 
phage cocktails and suitable for the biological control of V.splendidus. 

Katharios et al.145 

Photobacterium 
damselae formerly 
Vibrio damselae 

Opportunistic 
pathogens 

vB_Pd_PDCC-1 Seriola rivoliana vB_Pd_PDCC-1 against P. damselae subsp. damselae was isolated and 
characterized. vB_Pd_PDCC-1 increased the hatching rate of eggs, and 
reduced presumptive bacterial species 

Veyrand-Quir et al.146 

Pseudomonas 
plecoglossicida 

Hemorrhagic 
ascites 

PPpW-3, PPpW-4 Plecoglossus 
altivelis 

Mortalities of fish receiving PPpW-3, PPpW-4, PPpW-3/W were 53.3, 
40.0, 20.0 and 93.3%, respectively when phage impregnated feed was 
used to ayu with disease decreased after a 2 wk period. 

Park and Nakai61; 
Kawato et al.147 

Pseudomonas 
aeruginosa 

Aeromonas 
infection 

Pseudomonas phage Clarias 
gariepinus 

First report of application of phage therapy against MBL producing 
P.aeruginosa isolated from aquatic ecosystem 

Khairmar et al.148 

Lactococcus 
garvieae 

Lactococcosis PLgT-1 Marine fish The lysogenic phage PLgT-1 may be involved in the transfer of a virulence 
factor into L.garvieae strains colonizing marine fish in Japan 

Hoai and Yoshida149 

Lactococcosis PLgY-16, PLgY-30, 
PLgW-1 

Seriola 
quinqueradiata 

Phage administered either intraperitoneally or orally protected fish from 
L.garvieae infection. 

Nakai et al.150; Park et 
al.151,152 

Lactococcosis PLgY-30 S.quinqueradiata The complete sequence of L.garvieae phage PLgY-30 was obtained Hoai et al.153 
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Outcomes References 

Lactococcosis PLG-II S.quinqueradiata, 
S. dumerili, S. 
lalandi 

Genomics analysis suggests that phage PLG-II might represent a novel 
species in the genus Uwajimavirus. phage PLG-II a suitable candidate for 
control of L.garvieae serotype II fish infections. 

Akmal et al.154 

Lactococcosis WWP-1 O.mykiss Phage WWP-1 represented optimal antibacterial activity at temperatures 
ranging from 15 to 30 C, suggesting that it could be very effective at 
rainbow trout rearing temperature. In vivo experiment result, WWP1 
could decrease mortality rate of infected rainbow trout in aquaculture. 

Ghasemi et al.155 

Streptococcus iniae Streptococcosis PSiJ-31, PSiJ-32, 
PSiJ-41, PSiJ-42, 
PSiJ-51, PSiJ-52 

Paralichthys 
olivaceus 

Fish were injected intraperitoneally with bacteria and 1 h later IP-injected 
with a mixture of two or four phage isolates and observed at 25°C for 2 
wk. Mortalities of fish receiving phages were significantly lower than 
those of control fish without phage-treatment. 

Matsuoka et al.156 

Yersinia ruckeri Enteric 
redmouth 
disease, 
yersiniosis 

ɸ 2, ɸ 3, ɸ 3, ɸ 9, S.salar 4 different phages and a cocktail with a combination of the four was 
tested. Non-vaccinated fish had no phage reactive 
antibodies but inactivated phages were highly immunogenic for salmon 
and a good specific anti-phage antibody response was obtained in 
immunized salmon. 

Strand157 

Enteric 
redmouth 
disease, 
yersiniosis 

YerA41 Salmonid fish YerA41 genome sequence were determined, we performed RNA 
sequencing from phage cells at different time infection. 

Leskinen et al.158 

Enteric 
redmouth 
disease, 
yersiniosis 

φNC10 O.mykiss The φNC10 associated polysaccharide depolymerase activity reduced the 
ability of Y.ruckeri cells to cause mortality following intraperitoneal 
injection into fish. Potential usage of φNC10 for Y.ruckeri infection. 

Welch159 

Flavobacterium 
columnare 

Columnaris 
disease 

FCP1, FCP9, FCP1 Clarias batrachus Phage treatment led to disappearance of gross symptoms, negative 
bacteriological test, detectable phage and 100% survival in 
experimentally infected C.batrachus that was treated with a virulent 
bacteria and FCP1 a significant decrease in fishes. 

Prasad and Kumar160; 
Prasad et al.161 

Columnaris 
disease 

FKj-2, FL-1, FCL-2, 
FCV-1 

O.mykiss, D.rerio Phages infecting F.columnare were isolated only from fish farms during 
disease outbreaks. 100% of the zebrafish and 50% of the rainbow trout 
survived in the phage treatment. 

Laanto et al.162,163 

Columnaris 
disease 

FCO-F2 to FCOV-F2, 
FCOV-F5, COV-F25, 
FCO-F9 to FCL-2, 
FCOV-F13, FCOV-
F45 

Salmonid Bacterial infection decreased in the exposure cultures but started to 
increase after 1 to 2 days, along with a change in colony morphology from 
original rhizoid to rough. 

Kunttu et al.164 

Columnaris 
disease 

PFlc-1 ve PFlc-2 Carassius 
auratus 

Genomic characterization were made by looking at genome size Cagatay165 

Columnaris FCOV-S1 to 62 aquaculture Examined phenotypic and genetic characteristics 63 phages from fish Runtuvuori-Salmela et 
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shrimp species 
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disease environments farms in Finland and Sweden. al.166 

F.psychrophilum Rainbow trout 
fry 
syndrome, 
bacterial 
coldwater 
disease 

FpV-1 to FpV-22, 
FpV2, FpV4, 
FpV7, FpV9, 
FpV10,FpV14, FpV19 

O.mykiss Phages with strong lytic potential against F.psychrophilum host strains thus 
provided the foundation for future exploration of the potential of phages 
in the treatment of both diseases. 

Stenholm et al.167 

Rainbow trout 
fry 
syndrome 

PFpW-3, PFpC-Y, 
PFpW-6, 
PFpW-7,PFpW-8 

Plecoglossus 
altivelis 
altivelis 

Among the phages, in in vitro assays, PFpW-3 displayed high infectivity for 
F. psychrophilum isolated from ayu fish, indicating that it could have 
treatmentment of diseases 

Kim et al.168 

bacterial 
coldwater 
disease 

1H, 6H, 9H, 2P, 23T, 
2A,FpV4, FpV9 

S.salar, O.mykiss 15 bacteriophages able to infect some of the F.psychrophilum isolates and 
characterized six of them in detail. Phages were injected i.p. in a ratio of 
10:1 (PFU: CFU) and significantly decrease fish mortality. 

Castillo et al.169 

Rainbow trout 
fry 
syndrome 

FpV-4 and FpV-9 O.mykiss Diet with phage additives might be a method for delivery of phages to 
F.psychrophilum-infected fish. the potential of phages to spread to inner 
organs of rainbow trout after i.p. injection and toproliferate and maintain 
infectivity for up to 10 days. 

Madsen et al.170 

Rainbow trout 
fry 
syndrome, 
bacterial 
coldwater 
disease 

FpV-9 O.mykiss Survival of FpV-9 in vivo in juvenile fish after by bath, oral intubation into 
the stomach and phage-coated feed. Phages via coated feed pellets 
constitutes a promising method of treatment and prevention of diseases. 

Christiansen et al.171 

Rainbow trout 
fry 
syndrome 

FpV4 and FPSV-D22 O.mykiss The delivery of phages to fish organs by oral, suggests that higher phage 
dosages on feed pellets to offer fish an adequate protection against 
F.psychrophilum infections. 

Donati et al.172,173 
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Figure 2. Schematic steps on phage application in aquaculture.        
1. Phages are isolated from ponds or aquatic animals 2. Phages are isolated, purified, and identified 3. Phage is added to the farm water/fish/hatchery 4. After adding phages to water, 
they attach and contact the infected bacterial pathogen and then undergo a lytic cycle. Phage DNA would penetrate the host bacteria and replicate, transcription, and translation. 
Then the phage would assemble, the fish pathogen would be lysed, and phages would be released from the pathogen bacteria 5. Lysis of fish pathogen bacteria 6. Results of phage 
therapy in fish diseases. 

Application of columnar phages (FCP1, FCP9, and FCP1) 
to infected fish resulted in the resolution of disease symp-
toms and stopped infection.160,161 Four phages infecting F. 
columnare were isolated from fish farms during columnaris 
outbreaks. The zebrafish (100%) and the rainbow trout 
(50%) survived after the phage treatment.162,163 Further-
more, several studies reported isolation and application for 
F. psychrophilum phages that could be used for biocontrol 
of the fry syndrome and cold water disease in S. salar, 
O. Mykiss, and P. altivelis. Lytic phages against F. psy-
chrophilum strains provided the future potential in the 
treatment of this disease (Table 2 ).167‑173 

The therapeutic effects of six S. iniae lytic phages with 
dsDNA were studied against Streptococcosis infection in P. 
olivaceus at 25°C for 2 weeks (Table 2 ).156 

Y. ruckeri is the causative bacterium of yersiniosis, 
known as enteric red mouth disease in freshwater salmonid 
fish. Yer A41, ɸ 2, ɸ 3, ɸ 3, ɸ 9 and φNC10 phages were 
tested as a combined or single intraperitoneal injection to 
treat Y. ruckeri and antibody production was reported in 
phage-treated fish (Table 2).157‑159 

Two phages, named PT2 and phiKMV, were obtained 
from sewage, identified, and treated for P. aeruginosa in-
fection at the surface of C. gariepinus. It was observed that 

the number of infective lesions decreased after 8-10 days in 
phage-treated fish.148 

Similarly, phages, namely PPpW-3 and PPpW-4, were 
used to treat bacterial hemorrhagic ascites disease caused 
by P. plecoglossicida in P. altivelis.61,147 

There are a few studies reported that specific phages of 
E. tarda, E. İctaluri, and E. piscicida stop especially growth 
of bacteria and reduce edwardsiellosis in vitro in D. rerio, P. 
hypophthalmus, A. japonica and S. maximus.94,106‑113 

Various Vibrio species, such as V. harveyi, V. vulnificus, V. 
anguillarum, V. parahaemolyticus, V. alginolyticus, V. coralli-
ilyticus, V. splendidus, and P. damselae (formerly V. damse-
lae) are the cause of vibriosis have also been controlled by 
vibriophages which is biocontrol agents in fish (S. maximus 
L., S. salar, D. labrax, D. rerio, G. morhua L.) and P. monodon, 
L. vannamei, P. ornatus, H. laevigata, A. japonicus.187 Studies 
have reported that approximately 60 bacteriophages were 
morphologically identified and genome sequenced and ap-
plied against Vibrio strains with no side effects shown in 
Table 2.10,114‑118,121,127‑131,134,138,140,145,146,165 

CONCLUSION 

Despite good management practices, chemotherapeutic 
and prophylactic applications such as vaccines and various 
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Figure 3. Publication related to phage therapy in aquaculture over 25 years.           
The bar indicates the number of the Web of Science search for publications related to phage therapy and genomes associated with the most important fish pathogens A. hydrophila, A. 
salmonicida, E. tarta, V. harveyi, V. parahaemolyticus, V. anguillarum, V. alginolyticus, F. columnare, F. psychrophilum, Y. ruckeri, L. Garviae, and S. iniae in the last 25 years. 

antibiotics for producing fish, crustaceans, and mollusks in 
many countries where aquaculture is a vital economic re-
source, bacterial diseases still stay a severe problem as they 
cause high mortality rates. An additional problem of bac-
terial infection is nowadays not only bacterial resistance 
to antibiotics but also the use of all known antibiotics in 
the treatment. Therefore, phage therapy has been shown 
as a perfect and valid option for antibiotic treatment. It is 
also an environmentally friendly, relatively rapid, simple 
administration, and inexpensive approach to disease pre-
vention and control in aquaculture. Furthermore, thera-
peutic and prophylactic phage applications in aquaculture 
can effectively inactivate and eliminate pathogenic bacteria 
without harming useful microbiota and are easy to apply at 
various stages of vertebrates or invertebrates. Most of the 
aquaphage studies of the last 40 years, which we reviewed 
in this article, showed us that phage therapy has a gen-
eral protective effect and can be substituted for possible an-
tibiotics (Table 2). From the author’s perspective, although 
phage applications provide an optimistic view of future 
benefits for disease prevention and treatment in the world 

aquaculture sector, caution is required as the potential evo-
lution of phage resistance against bacterial agents may also 
be present. In addition, more field applications should be 
made with large-scale cultivation and long-term preserva-
tion, and standardized methods and formulations should 
be developed. Furthermore, new commercially patented 
aquaphage products must be developed for future aqua-
culture practice. More research and improvement in phage 
therapy will play a significant role in sustainable aquacul-
ture globally. 
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