Enhancing Treatment Decisions for Advanced Non-Small Cell Lung Cancer with Epidermal Growth Factor Receptor Mutations: A Reinforcement Learning Approach †


Bozcuk H. Ş., Sert L., Kaplan M. A., TATLI A. M., KARACA M., MUĞLU H., ...Daha Fazla

Cancers, cilt.17, sa.2, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 2
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/cancers17020233
  • Dergi Adı: Cancers
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, CINAHL, EMBASE, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: artificial intelligence, deep learning, epidermal growth factor receptor, machine learning, mutation, non-small cell lung cancer, tyrosine kinase inhibitors
  • Akdeniz Üniversitesi Adresli: Evet

Özet

Background: Although higher-generation TKIs are associated with improved progression-free survival in advanced NSCLC patients with EGFR mutations, the optimal selection of TKI treatment remains uncertain. To address this gap, we developed a web application powered by a reinforcement learning (RL) algorithm to assist in guiding initial TKI treatment decisions. Methods: Clinical and mutational data from advanced NSCLC patients were retrospectively collected from 14 medical centers. Only patients with complete data and sufficient follow-up were included. Multiple supervised machine learning models were tested, with the Extra Trees Classifier (ETC) identified as the most effective for predicting progression-free survival. Feature importance scores were calculated by the ETC, and features were then integrated into a Deep Q-Network (DQN) RL algorithm. The RL model was designed to select optimal TKI generation and a treatment line for each patient and was embedded into an open-source web application for experimental clinical use. Results: In total, 318 cases of EGFR-mutant advanced NSCLC were analyzed, with a median patient age of 63. A total of 52.2% of patients were female, and 83.3% had ECOG scores of 0 or 1. The top three most influential features identified were neutrophil-to-lymphocyte ratio (log-transformed), age (log-transformed), and the treatment line of TKI administration, as tested by the ETC algorithm, with an area under curve (AUC) value of 0.73, whereas the DQN RL algorithm achieved a higher AUC value of 0.80, assigning distinct Q-values across four TKI treatment categories. This supports the decision-making process in the web-based ‘EGFR Mutant NSCLC Treatment Advisory System’, where clinicians can input patient-specific data to receive tailored recommendations. Conclusions: The RL-based web application shows promise in assisting TKI treatment selection for EGFR-mutant advanced NSCLC patients, underscoring the potential for reinforcement learning to enhance decision-making in oncology care.