Journal of Supercritical Fluids, cilt.219, 2025 (SCI-Expanded)
The increasing prevalence of meniscus injuries highlights the critical need for the development of effective repair strategies. Currently, there is ongoing exploration of materials possessing microscopic and macroscopic characteristics akin to authentic meniscus tissue. In this study, meniscus tissue was subjected to a comparative evaluation of two different decellularization techniques which one of these involved conventional decellularization technique; one novel approach involved the utilization of supercritical carbon dioxide (scCO₂) technology on meniscus tissue. All decellularized tissues underwent biochemical, histological, microscopic, mechanical and cytotoxic evaluations. The optimized method, combining physical pretreatment, enzymatic agitation with trypsin agent, and chemical agitation with SDS agent, achieved a remarkable reduction of 82 % in genomic DNA content. Physical pre-treatment in scCO₂ decellularization facilitated enhanced penetration depth with trypsin, resulting in optimal group demonstrating a 76 % reduction in DNA content. While histological examinations and biochemical analyses indicated no alteration in collagen quantities, the conventional decellularization group exhibited a 42 % decline in GAG content, whereas the scCO2 group showed a 58 % decrease. Compressive modulus decreased from 22.8 ± 0.91 MPa in decellularized tissues to 15.26 ± 0.28 MPa in conventionally decellularized scaffold and 14.49 ± 0.48 MPa in scCO2 decellularized tissue, attributed to GAG destruction. Cytotoxicity assessments of the examined tissues revealed cell viability levels exceeding 75 % in both groups. Both approaches demonstrate potential for producing high-quality biomaterials; nevertheless, further research endeavors may lead to enhancements in the extracellular matrix preservation, mechanical characteristics, and facilitation of biological responses using supercritical fluid-based methodologies.