Effect of vitamin E and selenium on antioxidant enzymes in brain, kidney and liver of cigarette smoke-exposed mice


Ozkan A., Fiskin K., Ayhan A. G.

BIOLOGIA, cilt.62, sa.3, ss.360-364, 2007 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 62 Sayı: 3
  • Basım Tarihi: 2007
  • Doi Numarası: 10.2478/s11756-007-0060-1
  • Dergi Adı: BIOLOGIA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.360-364
  • Anahtar Kelimeler: mice (balb/c), smoking, antioxidants, PROTECTIVE ROLE, PLASMA, DAMAGE
  • Akdeniz Üniversitesi Adresli: Evet

Özet

The present study was conducted to evaluate the protective effects of vitamin E and selenium (Se) application on alteration of antioxidant enzyme activities against cigarette smoking induced oxidative damage in brains, kidneys and liver of mice. Male mice (balb/c) were exposed to cigarette smoke and treated with Se and/or vitamin E. Glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRX), superoxide dismutase (SOD) and catalase (CAT) enzyme activities in mice brain, kidney and liver were measured spectrophotometrically. GST, GPX, GRX, SOD and CAT enzyme activities in the brains of smoke-exposed mice were found lower than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Opposite to brain, enzyme activities in kidneys and livers of smoke-exposed mice were found higher than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Activities of GST, GPX, GRX SOD and CAT in the livers, kidneys and brains of smoke-exposed mice were found statistically different (p < 0.01) compared to control mice and Se-and vitamin E-treated mice. Combined application of vitamin E and Se had an additive protective effect against changing enzymes activities in smoke-exposed mice livers, kidneys and brains at the end of the both application periods. These results suggest that cigarette smoke exposure enhances the oxidative stress, thereby disturbing the tissue antioxidant defense system and combined application of vitamin E and Se protects the brain, kidney and liver from oxidative damage through their antioxidant potential.

The present study was conducted to evaluate the protective effects of vitamin E and selenium (Se) application on alteration of antioxidant enzyme activities against cigarette smoking induced oxidative damage in brains, kidneys and liver of mice. Male mice (balb/c) were exposed to cigarette smoke and treated with Se and/or vitamin E. Glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRX), superoxide dismutase (SOD) and catalase (CAT) enzyme activities in mice brain, kidney and liver were measured spectrophotometrically. GST, GPX, GRX, SOD and CAT enzyme activities in the brains of smoke-exposed mice were found lower than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Opposite to brain, enzyme activities in kidneys and livers of smoke-exposed mice were found higher than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Activities of GST, GPX, GRX SOD and CAT in the livers, kidneys and brains of smoke-exposed mice were found statistically different (p < 0.01) compared to control mice and Se-and vitamin E-treated mice. Combined application of vitamin E and Se had an additive protective effect against changing enzymes activities in smoke-exposed mice livers, kidneys and brains at the end of the both application periods. These results suggest that cigarette smoke exposure enhances the oxidative stress, thereby disturbing the tissue antioxidant defense system and combined application of vitamin E and Se protects the brain, kidney and liver from oxidative damage through their antioxidant potential.