Investigation of co-combustion of coal and olive cake in a bubbling fluidized bed with secondary air injection


ATİMTAY A., Varol M.

FUEL, cilt.88, sa.6, ss.1000-1008, 2009 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 88 Sayı: 6
  • Basım Tarihi: 2009
  • Doi Numarası: 10.1016/j.fuel.2008.11.030
  • Dergi Adı: FUEL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1000-1008
  • Anahtar Kelimeler: Co-combustion of olive cake and coal, Bubbling fluidized bed, Secondary air injection, COMBUSTION, RESIDUES, LIGNITE, WASTE
  • Akdeniz Üniversitesi Adresli: Hayır

Özet

In this study, a bubbling fluidized bed of 102 mm inside diameter and 900 mm height was used to burn olive cake and coal mixtures. Tuncbilek lignite coal was used together with olive cake for the co-combustion tests. Combustion performances and emission characteristics of olive cake and coal mixtures were investigated. Various co-combustion tests of coal with olive cake were conducted with mixing ratios of 25%, 50%, and 75% of olive cake by weight in the mixture. Operational parameters (excess air ratio, secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The results were compared with that of the combustion of olive cake and coal. Flue gas concentrations of O(2), CO, SO(2), NO(x), and total hydrocarbons (C(m)H(n)) were measured during combustion tests. For the setup used in this study, the optimum operating conditions with respect to NO(x) and SO(2) emissions were found to be 1.35 for excess air ratio, and 30 L/min for secondary air flowrate for the combustion of 75 wt% olive cake and 25 wt% coal mixture. The highest combustion efficiency of 99.8% was obtained with an excess air ratio of 1.7, secondary air flow rate of 40 L/min for the combustion of 25 wt% olive cake and 75 wt% coal mixture. (C) 2008 Elsevier Ltd. All rights reserved.

In this study, a bubbling fluidized bed of 102 mm inside diameter and 900 mm height was used to burn olive cake and coal mixtures. Tunçbilek lignite coal was used together with olive cake for the co-combustion tests. Combustion performances and emission characteristics of olive cake and coal mixtures were investigated. Various co-combustion tests of coal with olive cake were conducted with mixing ratios of 25%, 50%, and 75% of olive cake by weight in the mixture. Operational parameters (excess air ratio, secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The results were compared with that of the combustion of olive cake and coal. Flue gas concentrations of O2, CO, SO2, NOx, and total hydrocarbons (CmHn) were measured during combustion tests. For the setup used in this study, the optimum operating conditions with respect to NOx and SO2 emissions were found to be 1.35 for excess air ratio, and 30 L/min for secondary air flowrate for the combustion of 75 wt% olive cake and 25 wt% coal mixture. The highest combustion efficiency of 99.8% was obtained with an excess air ratio of 1.7, secondary air flow rate of 40 L/min for the combustion of 25 wt% olive cake and 75 wt% coal mixture.