Sustainability (Switzerland), cilt.14, sa.14, 2022 (SCI-Expanded)
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.Discharge of bilge and wastewater from ships into the sea poses a risk to human health due to the heavy metals. In this study, shipborne bilgewater and wastewater carcinogenic and non-carcinogenic human health risks determine by using the measured and literature values of heavy metals copper, iron, vanadium, chromium, manganese, cobalt, nickel, zinc, arsenic, cadmium, and mercury in the shipborne bilgewater and wastewater. The heavy metal contents of seawater were selected from 11 points determined in Antalya Bay, wastewater, and bilge samples taken from two ships. The human health risk was determined using the Monte Carlo Simulation (MCS) method using these measured values and the heavy metal concentrations in the Mediterranean Sea in the literature. The risk of carcinogenicity of heavy metals from wastewater by dermal route, ingestion, and from bilge water by dermal way and ingestion were evaluated. The wastewater is dermal Ni > As > Cr, the wastewater is Ni > Cr > As by ingestion, the dermal Ni > As > Cr in the bilge, and the risk of ingestion is Ni > Cr > As. It has been determined that the non-carcinogenic Cr, Co, Hg, and As values in the wastewater and bilge water are above the acceptable 1 and therefore expose a risk to human health. The human health carcinogenic risk caused by heavy metals generating from the bilge and wastewater is much higher than the standard values determined by the WHO. For the first time in this study, it was determined that bilge water exposes a high risk for both swimmers and ship personnel in the health risk assessment of shipborne wastewater and bilge water.