Sodium Tungstate Administration Ameliorated Diabetes-Induced Electrical and Contractile Remodeling of Rat Heart without Normalization of Hyperglycemia


AYDEMİR M., Ozturk N., Dogan S., Aslan M., Olgar Y., ÖZDEMİR S.

BIOLOGICAL TRACE ELEMENT RESEARCH, cilt.148, sa.2, ss.216-223, 2012 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 148 Sayı: 2
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1007/s12011-012-9350-8
  • Dergi Adı: BIOLOGICAL TRACE ELEMENT RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.216-223
  • Anahtar Kelimeler: Type 1 diabetes, Sodium tungstate, Contractility, Intracellular calcium, Ion channels, Oxidative stress, VENTRICULAR MYOCYTES, ANTIDIABETIC AGENT, GLUCOSE-METABOLISM, K+ CURRENTS, DYSFUNCTION, CARDIOMYOPATHY, IMPROVES, CALCIUM, TYPE-1, INHIBITION
  • Akdeniz Üniversitesi Adresli: Evet

Özet

Sodium tungstate administration ameliorated diabetes-induced electrical and contractile remodeling of rat heart without normalization of hyperglycemia.

Aydemir M1, Ozturk N, Dogan S, Aslan M, Olgar Y, Ozdemir S.

Abstract

Recently, sodium tungstate was suggested to improve cardiac performance of diabetic rats in perfused hearts based on its insulinomimetic activity. In this study, we aimed to investigate the cellular and molecular mechanisms underlying this beneficial effect of sodium tungstate. Tungstate was administered (100 mg/kg/day) to diabetic and control rats intragastrically for 6 weeks. Blood glucose levels increased, whereas body weight, heart weight and plasma insulin levels decreased significantly in diabetic animals. Interestingly, none of these parameters was changed by tungstate treatment. On the other hand, fractional shortening and accompanying intracellular Ca(2+) [Ca(2+)](i) transients of isolated ventricular myocytes were measured, and sodium tungstate was found to improve the peak shortening and the amplitude of [Ca(2+)](i) transients in diabetic cardiomyocytes. Potassium and L-type Ca(2+) currents were also recorded in isolated ventricular cells. Significant restoration of suppressed I (to) and I (ss) was achieved by tungstate administration. Nevertheless, L-type calcium currents did not change either in untreated or treated diabetic rats. Tissue biochemical parameters including TBARS, protein carbonyl content, xanthine oxidase (XO) and xanthine dehydogenase (XDH) were also determined, and diabetes revealed a marked increase in TBARS and carbonyl content which were decreased significantly by tungstate treatment. Conversely, although XO and XDH activities didn't change in untreated diabetic rats, a remarkable but insignificant decrease was detected in treated animals. In conclusion, tungstate treatment improved diabetes-induced contractile abnormalities via restoration of dysregulated [Ca(2+)](i) and altered ionic currents. This beneficial effect is due to antioxidant property of sodium tungstate rather than normalization of hyperglycemia.