Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene composite for heart-type fatty acid-binding protein detection


Creative Commons License

KARAMAN C., KARAMAN O., ATAR N., Yola M. L.

MICROCHIMICA ACTA, cilt.188, sa.6, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 188 Sayı: 6
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1007/s00604-021-04838-6
  • Dergi Adı: MICROCHIMICA ACTA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Analytical Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, EMBASE, Food Science & Technology Abstracts, MEDLINE, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Anahtar Kelimeler: h-FABP protein, hc-g-C3N4@CDs, Cd0.5Zn0.5S/d-Ti3C2Tx MXene, Immunosensor, Voltammetty, HYDROGEN-PRODUCTION, ENGINEERED G-C3N4, BAND-STRUCTURE, H-FABP, SENSOR, ELECTRODE, PHOTOCATALYSTS, PERFORMANCE, NANOSHEETS, WATER
  • Akdeniz Üniversitesi Adresli: Evet

Özet

Acute myocardial infarction (AMI) is a significant health problem owing to its high mortality rate. Heart-type fatty acid-binding protein (h-FABP) is an important biomarker in the diagnosis of AMI. In this work, an electrochemical h-FABP immunosensor was developed based on Cd0.5Zn0.5S/d-Ti3C2Tx MXene (MXene: Transition metal carbide or nitride) composite as signal amplificator and core-shell high-crystalline graphitic carbon nitride@carbon dots (hc-g-C3N4@CDs) as electrochemical sensor platform. Firstly, a facile calcination technique was applied to the preparation of hc-g-C3N4@CDs and immobilization of primary antibody was performed on he-g-C3N4@CDs surface. Then, the conjugation of the second antibody to Cd0.5Zn0.5S/d-Ti3C2Tx MXene was carried out by strong pi-pi and electrostatic interactions. The prepared electrochemical h-FABP immunosensor was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD) method, Fourier-transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The prepared electrochemical h-FABP immunosensor indicated a good sensitivity with detection limit (LOD) of 3.30 fg mL(-1) in the potential range +0.1 to +0.5 V. Lastly, low-cost, satisfactory stable, and environmentally friendly immunosensor was presented for the diagnosis of acute myocardial infarction.