Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence


Mezö I., DİL A.

CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, cilt.7, sa.2, ss.310-321, 2009 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 7 Sayı: 2
  • Basım Tarihi: 2009
  • Doi Numarası: 10.2478/s11533-009-0008-5
  • Dergi Adı: CENTRAL EUROPEAN JOURNAL OF MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.310-321
  • Anahtar Kelimeler: Harmonic numbers, Hyperharmonic numbers, r-Stirling numbers, Fibonacci numbers, Euler-Seidel matrices
  • Akdeniz Üniversitesi Adresli: Evet

Özet

In this paper we use the Euler-Seidel method for deriving new identities for hyperharmonic and r-Stirling numbers. The exponential generating function is determined for hyperharmonic numbers, which result is a generalization of Gosper's identity. A classification of second order recurrence sequences is also given with the help of this method.