3rd International Conference on Image Processing Theory, Tools and Applications (IPTA), İstanbul, Türkiye, 15 - 18 Ekim 2012, ss.192-197
A fast and accurate liver segmentation method is a
challenging work in medical image analysis area. Liver segmentation is an
important process for computer-assisted diagnosis, pre-evaluation of liver
transplantation and therapy planning of liver tumors. There are several
advantages of magnetic resonance imaging such as free form ionizing
radiation and good contrast visualization of soft tissue. Also, innovations
in recent technology and image acquisition techniques have made
magnetic resonance imaging a major tool in modern medicine. However,
the use of magnetic resonance images for liver segmentation has been slow
when we compare applications with the central nervous systems and
musculoskeletal. The reasons are irregular shape, size and position of the
liver, contrast agent effects and similarities of the gray values of neighbor
organs. Therefore, in this study, we present a fully automatic liver
segmentation method by using an approximation of the level set based
contour evolution from T2 weighted magnetic resonance data sets. The
method avoids solving partial differential equations and applies only
integer operations with a two-cycle segmentation algorithm. The efficiency
of the proposed approach is achieved by applying the algorithm to all
slices with a constant number of iteration and performing the contour
evolution without any user defined initial contour. The obtained results
are evaluated with four different similarity measures and they show that
the automatic segmentation approach gives successful results.