INTERNATIONAL JOURNAL OF SPORTS MEDICINE, cilt.26, sa.9, ss.710-713, 2005 (SCI-Expanded)
An important explanatory theory for the mechanism of postexercise proteinuria is that angiotensin II could be inhibited by angiotensin converting enzyme inhibitors. Because of the kininase effect of the angiotensin converting enzyme, it is unclear whether the kallikrein-kinin system contributes to the effect of angiotensin converting enzyme inhibitors on postexercise proteinuria. The aim of this study was to evaluate any possible involvement of the kallikrein-kinin system in the therapeutic effect of angiotensin converting enzyme inhibitors on postexercise proteinuria. We evaluated urinary protein levels in exhausted rats receiving an angiotensin converting enzyme inhibitor (enalapril) or an angiotensin II type I receptor antagonist (losartan). Enalapril (30 mg/kg/day, two days) or losartan (20 mg/kg/day, two days) were given to animals using an intragastric catheter. Urinary pretein levels increased (41 %) in rats which were exhausted via treadmill running (p < 0.05). In animals that received drug treatment (enalapril or losartan), but did not exercise to exhaustion, urinary protein levels were not different from the control group. Urinary protein levels were found to be significantly lower (p < 0.05) in animals which performed acute exhaustive exercise after enalapril or losartan administration, compared to rats which were exhausted without drug administration. Inhibition of postexercise proteinuria by either enalapril or losartan suggested that angiotensin II plays an important role in postexercise proteinuria, however, it appears the kallikrein-kinin system is not involved in angiotensin converting enzyme inhibitors effect.