Chitin Nanocrystal Hydrophobicity Adjustment by Fatty Acid Esterification for Improved Polylactic Acid Nanocomposites


Colijn I., YANAT M., Terhaerdt G., Molenveld K., Boeriu C. G., Schroën K.

Polymers, cilt.14, sa.13, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 13
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3390/polym14132619
  • Dergi Adı: Polymers
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, Compendex, Food Science & Technology Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: chitin nanocrystals, fatty acids, nanocomposites, poly lactic acid, Steglich esterification, surface acetylation
  • Akdeniz Üniversitesi Adresli: Evet

Özet

Bioplastics may solve environmental issues related to the current linear plastic economy, but they need improvement to be viable alternatives. To achieve this, we aimed to add chitin nanocrystals (ChNC) to polylactic acid (PLA), which is known to alter material properties while maintaining a fully bio-based character. However, ChNC are not particularly compatible with PLA, and surface modification with fatty acids was used to improve this. We used fatty acids that are different in carbon chain length (C4–C18) and degree of saturation (C18:2). We successfully used Steglich esterification and confirmed covalent attachment of fatty acids to the ChNC with FTIR and solid-state 13C NMR. The morphology of the ChNC remained intact after surface modification, as observed by TEM. ChNC modified with C4 and C8 showed higher degrees of substitution compared to fatty acids with a longer aliphatic tail, while particles modified with the longest fatty acid showed the highest hydrophobicity. The addition of ChNC to the PLA matrix resulted in brown color formation that was reduced when using modified particles, leading to higher transparency, most probably as a result of better dispersibility of modified ChNC, as observed by SEM. In general, addition of ChNC provided high UV protection to the base polymer material, which is an additional feature that can be created through the addition of ChNC, which is not at the expense of the barrier properties, or the mechanical strength.