An electrochemical molecularly imprinted sensor based on CuBi2O4/rGO@MoS2 nanocomposite and its utilization for highly selective and sensitive for linagliptin assay


Mehmandoust M., ERK N., KARAMAN C., KARAMAN O.

Chemosphere, cilt.291, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 291
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.chemosphere.2021.132807
  • Dergi Adı: Chemosphere
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: CuBi2O4, Linagliptin, Molecularly imprinted polymers, MoS2, Reduced graphene oxide, Screen-printed carbon electrode
  • Akdeniz Üniversitesi Adresli: Evet

Özet

© 2021 Elsevier LtdThe molecularly imprinted polymers (MIP) is an outstanding electrochemical tool that demonstrates good chemical sensitivity and stability. These main advantages, coupled with the material's vast microfabrication flexibility, make molecularly imprinted sensors an attractive sensing device. Herein, it was aimed to develop a state-of-art molecularly imprinted sensor based on CuBi2O4/rGO@MoS2 nanocomposite to be utilized for the detection of linagliptin (LNG), a novel hypoglycemic drug. The electrochemical characterizations of linagliptin on the surface of the modified electrode was examined via cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Several characterization methods including transmission electron microscope (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and Energy-dispersive X-ray spectroscopy(EDX), were utilized for electrode characterization. The LNG imprinted voltammetric sensor was developed in 80.0 mM phenol containing 20.0 mM LNG. CuBi2O4/rGO@MoS2 nanocomposite on LNG imprinted screen-printed carbon electrode (SPCE) (MIP/CuBi2O4/rGO@MoS2 nanocomposite/SCPE) exhibited a linear relationship between peak current and LNG concentration in the range 0.07–0.5 nM with a detection limit of 0.057 nM. In the existence of interfering substances, an LNG imprinted electrode was utilized to analyze urine, human plasma, and tablet samples with adequate selectivity. The developed sensor was also illustrated for stability, repeatability, reproducibility, and reusability.