A generalization of projective covers


ALKAN M., Nicholson W. K., ÖZCAN A.

JOURNAL OF ALGEBRA, cilt.319, sa.12, ss.4947-4960, 2008 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 319 Sayı: 12
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1016/j.jalgebra.2008.03.029
  • Dergi Adı: JOURNAL OF ALGEBRA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.4947-4960
  • Anahtar Kelimeler: projective cover, delta-cover, Soc-cover, semiregular, semiperfect, SEMIPERFECT MODULES, SEMIREGULAR MODULES, RINGS, PERFECT, RESPECT
  • Akdeniz Üniversitesi Adresli: Evet

Özet

Let M be a left module over a ring R and I an ideal of R. We call (P, f) a projective I-cover of M if f is an epimorphism from P to M, P is projective, Ker f subset of I P, and whenever P = Ker f + X, then there exists a summand Y of P in Ker f such that P = Y + X. This definition generalizes projective covers and projective delta-covers. Similar to semiregular and serniperfect rings, we characterize I-semiregular and I-semiperfect rings which are defined by Yousif and Zhou using projective I-covers. In particular, we consider certain ideals such as Z((R) R), Soc((R) R), delta(R R) and Z(2) ((R) R). (c) 2008 Elsevier Inc. All rights reserved.