INFORMATION FUSION, cilt.32, ss.109-119, 2016 (SCI-Expanded)
Offline signature verification is a task that benefits from matching both the global shape and local details; as such, it is particularly suitable to a fusion approach. We present a system that uses a score-level fusion of complementary classifiers that use different local features (histogram of oriented gradients, local binary patterns and scale invariant feature transform descriptors), where each classifier uses a feature-level fusion to represent local features at coarse-to-fine levels. For classifiers, two different approaches are investigated, namely global and user-dependent classifiers. User-dependent classifiers are trained separately for each user, to learn to differentiate that user's genuine signatures from other signatures; while a single global classifier is trained with difference vectors of query and reference signatures of all users in the training set, to learn the importance of different types of dissimilarities.