Cell line development and bioreactor process optimization for an atezolizumab biosimilar


Kuyucu A. Z., Sayili D., Orkut R., Mert O., Tarman İ. O., Lulaci B., ...Daha Fazla

Biotechnology and Applied Biochemistry, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1002/bab.2704
  • Dergi Adı: Biotechnology and Applied Biochemistry
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Applied Science & Technology Source, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Compendex, Computer & Applied Sciences, EMBASE, Environment Index, Food Science & Technology Abstracts, INSPEC, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: atezolizumab, bioprocess engineering, biosimilar, cancer, monoclonal antibody
  • Akdeniz Üniversitesi Adresli: Evet

Özet

Checkpoint inhibitors are widely recognized immunotherapeutic drugs, known for their effectiveness in treating various cancers. Atezolizumab, targeting the immune checkpoint programmed death-ligand 1, is successfully used to treat several types of cancers. Atezolizumab is a potential biosimilar candidate due to its huge success in the clinic but there is no literature on its production process in mammalian cells. In this study, we generated a monoclonal cell line derived from recombinant Chinese hamster ovary DG44 cells to produce atezolizumab. The selected single clone was employed for media screening and process development. Following production in a 7-L bioreactor, atezolizumab was purified using a three-step chromatographic method. Finally, the purified atezolizumab was characterized and compared with commercial atezolizumab (Tecentriq) through several chromatographic and kinetics analyses.