THEORETICAL AND MATHEMATICAL PHYSICS, cilt.155, sa.3, ss.884-895, 2008 (SCI-Expanded)
We obtain the coherent states for a particle in the noncentral Hartmann potential by transforming the problem into four isotropic oscillators evolving in a parametric time. We use path integration over the holomorphic coordinates to find the quantum states for these oscillators. The decomposition of the transition amplitudes gives the coherent states and their parametric-time evolution for the particle in the Hartmann potential. We also derive the coherent states in the parabolic coordinates by considering the transition amplitudes between the coherent states and eigenstates in the configuration space.