Generalizations of poly-Bernoulli and poly-Cauchy numbers


Creative Commons License

CENKCİ M., Young P. T.

EUROPEAN JOURNAL OF MATHEMATICS, cilt.1, sa.4, ss.799-828, 2015 (ESCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 1 Sayı: 4
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1007/s40879-015-0071-3
  • Dergi Adı: EUROPEAN JOURNAL OF MATHEMATICS
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus
  • Sayfa Sayıları: ss.799-828
  • Anahtar Kelimeler: Poly-Bernoulli, Poly-Cauchy numbers, Weighted Stirling numbers, Degenerate Stirling numbers
  • Akdeniz Üniversitesi Adresli: Evet

Özet

In this paper we consider some generalizations of poly-Bernoulli and poly-Cauchy numbers. The first is by means of the Hurwitz-Lerch zeta function. The second generalization is via weighted Stirling numbers. The third one is given with the help of degenerate Stirling numbers. All these generalizations lead to symmetries between various types of Stirling numbers, and enable us to investigate and expand algebraic properties of poly-Bernoulli and poly-Cauchy numbers. We also combine these generalizations and derive numerous combinatorial and arithmetical identities.