Chitin Nanocrystals Provide Antioxidant Activity to Polylactic Acid Films


Creative Commons License

YANAT M., Colijn I., Schroën K.

Polymers, cilt.14, sa.14, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 14
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3390/polym14142965
  • Dergi Adı: Polymers
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, Compendex, Food Science & Technology Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: active packaging, antioxidant activity, chitin nanocrystals, DPPH, nanocomposite, polylactic acid
  • Akdeniz Üniversitesi Adresli: Evet

Özet

About 1/3rd of produced food goes to waste, and amongst others, advanced packaging concepts need to be developed to prevent this from happening. Here, we target the antioxidative functionality of food packaging to thus address food oxidation without the need for the addition of antioxidants to the food product, which is not desirable from a consumer point of view. Chitin nanocrystals (ChNC) have been shown to be promising bio-fillers for improving the mechanical strength of biodegradable plastics, but their potential as active components in plastic films is rather unexplored. In the current study, we investigate the antioxidant activity of chitin nanocrystals as such and as part of polylactic acid (PLA) films. This investigation was conducted using DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity. Chitin nanocrystals produced via acid hydrolysis showed five times higher activity compared to crude chitin powder. When using these crystals as part of a polylactic acid film (either inside or on top), in both scenarios, antioxidant activity was found, but the effect was considerably greater when the particles were at the surface of the film. This is an important proof of the principle that it is possible to create biodegradable plastics with additional functionality through the addition of ChNC.