A generalization of parabolic potentials associated to Laplace-Bessel differential operator and its behavior in the weighted Lebesque spaces


Creative Commons License

SEKİN Ç.

TURKISH JOURNAL OF MATHEMATICS, cilt.45, sa.1, ss.566-578, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 1
  • Basım Tarihi: 2021
  • Doi Numarası: 10.3906/mat-2008-26
  • Dergi Adı: TURKISH JOURNAL OF MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.566-578
  • Anahtar Kelimeler: Laplace-Bessel differential operator, Fourier-Bessel transform, singular parabolic potentials, generalized translation operator, Hardy-Littlewood-Sobolev type inequality, WAVELET TRANSFORMS, LEBESGUE SPACES, RIESZ
  • Akdeniz Üniversitesi Adresli: Evet

Özet

In this work we introduce some generalizations of the singular parabolic Riesz and parabolic Bessel potentials. Namely, Delta(nu) being the Laplace-Bessel singular differential operator, we define the families of operators