Physics of the Dark Universe, cilt.49, 2025 (SCI-Expanded)
In this research, we investigate the quantum and classical phase transitions of the Dirac particles in a homogeneously magnetized curved rotating 2+1 dimensional spacetime. We consider the intricate relationship between geometry and quantum phase events through the study of quantum electrodynamics in the rotating curved spacetime. Using methods from quantum electrodynamics and statistical mechanics, the study examines the effects of an external magnetic field, the background rotation parameter, and curvature on the characteristics of quantum and classical phase transitions, focusing on critical points and scaling behavior, and we see that as thermal fluctuations get closer to zero, quantum fluctuations begin to dominate at this system.