Mechanism of methanol decomposition on the Cu-Embedded graphene: A DFT study


Akça A., KARAMAN O., Karimi-Maleh H., Karimi F., KARAMAN C., Atar N., ...Daha Fazla

International Journal of Hydrogen Energy, cilt.48, sa.17, ss.6624-6637, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 48 Sayı: 17
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.ijhydene.2021.09.028
  • Dergi Adı: International Journal of Hydrogen Energy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Artic & Antarctic Regions, Chemical Abstracts Core, Communication Abstracts, Environment Index, INSPEC
  • Sayfa Sayıları: ss.6624-6637
  • Anahtar Kelimeler: Cu-embedded graphene, Density functional theory, Methanol decomposition, Reaction mechanism
  • Akdeniz Üniversitesi Adresli: Evet

Özet

© 2021 Hydrogen Energy Publications LLCThe methanol decomposition reaction has gained substantial attention due to the wide range of applications that its intermediates offer. In this work, methanol (CH3OH) decomposition on Copper-embedded graphene (CuG) surface has been investigated via density functional theory with Grimme-D2 dispersion correction. The charge density of the CuG surface has been analyzed and the redistribution of the electron density of the surface has been represented via the electron density difference (EDD) map. Moreover, the decomposition reaction mechanism of CH3OH on the CuG surface through the cleavage of C–H, O–H and C–O bonds has been investigated in detail. In the initial state, the C–O and O–H bonds of CH3OH have similar activation barriers, thereby the adsorption and degradation mechanism of the intermediate states arising through O–H bond cleavage on the CuG surface has been investigated. In addition, the charge density calculations of the transition state geometries have been conducted and examined with EDD maps. The results have revealed that the previously adsorbed oxygen molecule exhibited high catalytic activity towards O–H decomposition compared to the bare surface. The CuG surface has offered higher activity on the C–H bonds compared to the C–O bonds of the intermediate states generated by CH3OH decomposition. The results revealed that the proposed CuG structure can be utilized as an alternative electrode catalyst that can prevent the CO poisoning issue in direct methanol fuel cells.