Nearly Century-scale Variation of the Sun's Radius


Creative Commons License

HIREMATH K. M., Rozelot J. P., Sarp V., Kilcik A., PAVAN D. G., GURUMATH S. R.

ASTROPHYSICAL JOURNAL, cilt.891, sa.2, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 891 Sayı: 2
  • Basım Tarihi: 2020
  • Doi Numarası: 10.3847/1538-4357/ab6d08
  • Dergi Adı: ASTROPHYSICAL JOURNAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, INSPEC, zbMATH, DIALNET
  • Akdeniz Üniversitesi Adresli: Evet

Özet

The Kodaikanal Archive Program (India) is now available to the scientific community in digital form as daily digitized solar white light pictures, from 1923 to 2011. We present here the solar radius data, obtained after a painstaking effort to remove all effects that contribute to the error in their measurements (limb darkening, distortion of the objective lens, refraction, other instrumental effects, etc.). These data were analyzed to reveal any significant periodic variations, after applying a multi-taper method with red noise approximation and the Morlet wavelet transform analysis. After removing obvious periodic variations (such as solar rotation and Earth annual rotation), we found a possible cycle variation at 11.4 yr, quasi biennial oscillations at 1.5 and 3.8 yr, and Rieger-type periodicity at approximate to 159, 91, and 63 days. Another approximate to 7.5 yr periodicity (as a mean) resulting from two other main periodicities detected at 6.3-7.8 yr can be identified as an atmospheric component. The detrending data show, over a mean radius of 959 ''. 7 +/- 0 ''.5, a residual of less than approximate to(-)1 mas over the time period of analysis: if not spurious, this estimate indicates a faint decline, but probably confirms more the constancy of the solar diameter during the considered ranging time, within instrumental and methodological limits. The Kodaikanal long quality observations contribute to international efforts to bring past solar data measurements to the community to further explore issues, for instance, those of the luminosity/radius properties that could be used to pinpoint the "seat of the solar cycle."