Enhancing Glass Transition Temperature of Poly(methylmethacrylate) by Incorporating Methacrylate-Functional Silane Grafted SiO2 Nanoparticles


Emre Yavuz Y., ERDEM R., AKARSU E.

Polymer Science - Series B, cilt.64, sa.4, ss.546-552, 2022 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 64 Sayı: 4
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1134/s1560090422700191
  • Dergi Adı: Polymer Science - Series B
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, Compendex, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.546-552
  • Akdeniz Üniversitesi Adresli: Evet

Özet

© 2022, Pleiades Publishing, Ltd.Abstract: Nanocomposites attract the attention of researchers due to the increasing demand on materials having unique properties. Incorporation of nanoparticles into polymers considerably improves some materials properties such as thermal stability. In current study, PMMA/SiO2 hybrid nanocomposites including ungrafted and grafted silica nanoparticles have been prepared. The surfaces of SiO2 nanoparticles were grafted with 3-(methacryloyloxypropyl)trimethoxysilane (MPTS) and 3-(methacryloyloxypropyl)triethoxysilane (MPTES) by sol-gel technique. The structure, morphology and thermal properties of the obtained bulk materials were investigated by FTIR, SEM-EDX, TGA and DSC. Based on the studies of infrared spectroscopy, polymerization of MMA monomers was approved by following the intensity of acrylate group. Thermal characteristics of nanocomposite structures enhanced remarkably as SiO2 nanoparticles were introduced to the polymer matrix and glass transition temperature Tg value reached to the highest (166°C) for MPTES@20% SiO2-PMMA hybrid nanocomposite. According to SEM analysis, the most homogenous structure belonged to MPTES@20% SiO2-PMMA hybrid nanocomposite.