A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials


Ozden H., ŞİMŞEK Y., Srivastava H. M.

COMPUTERS & MATHEMATICS WITH APPLICATIONS, cilt.60, sa.10, ss.2779-2787, 2010 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 60 Sayı: 10
  • Basım Tarihi: 2010
  • Doi Numarası: 10.1016/j.camwa.2010.09.031
  • Dergi Adı: COMPUTERS & MATHEMATICS WITH APPLICATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.2779-2787
  • Anahtar Kelimeler: Bernoulli numbers and Bernoulli polynomials, Euler numbers and Euler polynomials, Genocchi numbers and Genocch polynomials, Riemann and Hurwitz (or generalized) zeta functions, Hurwitz-Lerch zeta function, Lerch zeta function, Polylogarithm function, Lipschitz-Lerch zeta function, Recurrence relations, Mellin transformation, Dirichlet character, APOSTOL-BERNOULLI, ZETA, NUMBERS, EXTENSION, FORMULAS, (H
  • Akdeniz Üniversitesi Adresli: Evet

Özet

The goal of this paper is to unify and extend the generating functions of the generalized Bernoulli polynomials, the generalized Euler polynomials and the generalized Genocchi polynomials associated with the positive real parameters a and b and the complex parameter beta. By using this generating function, we derive recurrence relations and other properties for these polynomials. By applying the Mellin transformation to the generating function of the unification of Bernoulli, Euler and Genocchi polynomials, we construct a unification of the zeta functions. Furthermore, we give many properties and applications involving the functions and polynomials investigated in this paper. (C) 2010 Elsevier Ltd. All rights reserved.