Efflux pump effects on Mycobacterium tuberculosis drug resistance


Valıyeva G., Durupınar B., ÇOBAN A. Y.

Journal of Chemotherapy, cilt.35, sa.7, ss.601-609, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 35 Sayı: 7
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1080/1120009x.2023.2173857
  • Dergi Adı: Journal of Chemotherapy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, BIOSIS, CAB Abstracts, EMBASE, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.601-609
  • Anahtar Kelimeler: Drug resistance, efflux pumps, efflux pump inhibitors, Mycobacterium tuberculosis
  • Akdeniz Üniversitesi Adresli: Evet

Özet

Resistance and tolerance to antituberculosis drugs have become serious problems in disease treatment. This multi-phase study investigated the contributions of efflux pumps to Mycobacterium tuberculosis drug resistance. In the first phase, the minimum inhibitory concentration (MIC) levels of antibiotics were determined. In the second phase, MIC levels were determined in the presence of the efflux pump inhibitors carbonyl cyanide m-chlorophenyl hydrazone (CCCP), verapamil, reserpine and thioridazine. In the third phase, MIC levels were reduced in 6 M. tuberculosis isolates in the presence of efflux pump inhibitors to determine the expression of putative efflux pump genes by reverse transcriptase-polymerase chain reaction (RT-PCR). MIC levels of fluoroquinolones decreased in 6 (6.52%) isolates, MIC of rifampicin in 4 (4.34%), and MIC of streptomycin in 3 (3.26%) in the presence of efflux pump inhibitors reserpine, CCCP and verapamil. The efflux pump inhibitors CCCP, verapamil, and reserpine changed MICs 2- to 16-fold. Overexpression of all 15 efflux pump genes was observed in 6 isolates with a reduction in MIC values in the presence of efflux pump inhibitors. The overexpression of efflux-related genes in resistant isolates suggests that efflux pumps are associated with resistance development.