Grafting based DNA methylation alteration of snoRNAs in upland cotton (Gossypium L.)


Creative Commons License

KARACA M., İNCE A. G.

Physiology and Molecular Biology of Plants, cilt.30, sa.6, ss.893-907, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 30 Sayı: 6
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s12298-024-01469-y
  • Dergi Adı: Physiology and Molecular Biology of Plants
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Veterinary Science Database
  • Sayfa Sayıları: ss.893-907
  • Anahtar Kelimeler: Differently methylated cytosine, Gene elements, Seed weight, Seedling vigor, WGBS
  • Akdeniz Üniversitesi Adresli: Evet

Özet

The effects of grafting in response to various biotic and abiotic stressors have been studied, however, the methylation status of small nucleolar RNA (snoRNA) genes in heterograft and homograft cotton needs investigation. This study was undertaken to determine grafting effects on DNA methylation of snoRNA genes in Upland cotton. Rootstocks used were Pima 3–79 (Gossypium barbadense acc. Pima 3–79) and Texas Marker-1 (G. hirsutum acc. TM-1), representing two different species with different fiber properties, adaptations, and morphologies. The methylation ratio and differently methylated cytosines (DMCs) of 10935 snoRNA genes in mature seeds of heterograft and homograft cotton samples were studied using the whole genome bisulfite sequencing method. Seedling vigor and seed weight were studied to investigate phenotype alterations that might be associated with altered methylation levels among grafts. Statistically significant DMC differences among gene elements of snoRNA genes and between homograft and heterograft cotton samples were identified in the absence of DNA sequence alterations. DNA methylation alterations of snoRNA genes associated with seedling vigor and 100 seed weight. The majority of snoRNA genes showed higher numbers of mCG + mCHG-DMCs with increased methylation levels in heterograft, while there were higher numbers of mCG + mCHG-DMCs with decreased methylation levels in homograft. Since snoRNAs regulate essential genes for plant growth and development and plant adaptation to different habitats or extreme environments, their altered methylation levels should be related with plant physiology.