Parameter identification for gompertz and logistic dynamic equations


Creative Commons License

Akin E., PELEN N. N., TİRYAKİ İ. U., YALÇIN F.

PLOS ONE, cilt.15, sa.4, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 4
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1371/journal.pone.0230582
  • Dergi Adı: PLOS ONE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Animal Behavior Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, Index Islamicus, Linguistic Bibliography, MEDLINE, Pollution Abstracts, Psycinfo, zbMATH, Directory of Open Access Journals
  • Akdeniz Üniversitesi Adresli: Evet

Özet

In this paper, we generalize and compare Gompertz and Logistic dynamic equations in order to describe the growth patterns of bacteria and tumor. First of all, we introduce two types of Gompertz equations, where the first type 4-paramater and 3-parameter Gompertz curves do not include the logarithm of the number of individuals, and then we derive 4-parameter and 3-parameter Logistic equations. We notice that Logistic curves are better in modeling bacteria whereas the growth pattern of tumor is described better by Gompertz curves. Increasing the number of parameters of Logistic curves give favorable results for bacteria while decreasing the number of parameters of Gompertz curves for tumor improves the curve fitting. Moreover, our results overshadow some of the existing results in the literature.