Physiological, photochemical, and antioxidant responses of wild and cultivated Carthamus species exposed to nickel toxicity and evaluation of their usage potential in phytoremediation


BARAN U., EKMEKÇİ Y.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, cilt.29, sa.3, ss.4446-4460, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 29 Sayı: 3
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1007/s11356-021-15493-y
  • Dergi Adı: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, IBZ Online, ABI/INFORM, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, EMBASE, Environment Index, Geobase, MEDLINE, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.4446-4460
  • Anahtar Kelimeler: Antioxidant enzymes, Biomass, Chlorophyll a fluorescence, Nickel accumulation, Toxicity and tolerance, Safflower species, HEAVY-METALS, ENZYME-ACTIVITIES, CHLOROPHYLL FLUORESCENCE, DROUGHT STRESS, ULTRAVIOLET-B, PLANTS, ACCUMULATION, L., TOLERANCE, GROWTH
  • Akdeniz Üniversitesi Adresli: Evet

Özet

The impacts of Ni toxicity on growth behaviors, photochemical, and antioxidant enzymes activities of wild (Carthamus oxyacantha M. Bieb.) and cultivated (Carthamus tinctorius L.) safflower species were investigated in this study. Fourteen-day-old seedlings were treated with excessive Ni levels [control, 0.5, 0.75, and 1.0 mM NiCl2 center dot 6H(2)O] for 7 days. The results of chlorophyll a fluorescence indicated that toxic nickel exposure led to changes in specific, phenomenological energy fluxes and quantum yields in thylakoid membranes, and activities of donor and acceptor sides of photosystems. These changes resulted in a significant decrease in the photosynthetic activities by about 50% in both species, but these negative effects of Ni were not in a level to destroy the functionality of the photosystems. At the same time, toxic Ni affected membrane integrity and the amount of photosynthetic pigments in the antenna and active reaction centers. Additionally, the accumulation of Ni was higher in roots than in stem and leaves for both species. Depending on Ni accumulation, a significant reduction in dry biomass of root by approx. 64.8 and 45.7% and shoot by 41 and 24.7% were observed in wild and cultivated species, respectively. Two species could probably withstand deleterious Ni toxicity with better upregulating own protective defense systems such as antioxidant enzymes and phenolic compounds. Among of them, SOD and POD activities were increased with increasing Ni concentrations. The POD activities of both species were most prominent and consistently increased (approx. 2 folds in roots and 6 folds in leaves) in highly toxic Ni levels and may be protected them from damaging effect of H2O2. When all results are evaluated as a whole, Carthamus species produced similar responses to toxicity and also both species have bioconcentration (BCF) and bioaccumulation factor (BF) > 1 and translocation factor < 1 under Ni toxicity may be regarded a good indication of Ni tolerance. Furthermore, it is possible to use the Carthamus species as phytostabilizers of soils contaminated with nickel, because of their roots accumulating more nickel.