Estimation Of Turkey's Carbon Dioxide Emission with Machine Learning


Creative Commons License

ÇOŞGUN A.

International Journal of Computational and Experimental Science and Engineering, cilt.10, sa.1, ss.95-101, 2024 (Scopus) identifier

Özet

Carbon dioxide emissions are an important factor in the increase of greenhouse gases in the atmosphere and climate change. Controlling and reducing carbon dioxide emissions plays an important role in combating global warming and climate change. Various national and international efforts are being carried out to reduce greenhouse gas emissions and switch to sustainable energy sources. For this reason, estimating carbon dioxide emissions in the coming years is important for determining the measures to be taken. In this study, Turkey's carbon dioxide emissions are successfully estimated using two different machine learning models. The success of the study was evaluated using three different statistical measures: R2, MSE and MAE. The R2 of decision trees was 89.4%, MSE was 0.013 and MAE was 0.011; the R2 of artificial neural networks was 92.7%, MSE was 0.009 and MAE was 0.006. When we compare the two models, it is seen that ANN is more successful than decision trees and predicts with less error.