Atıf İçin Kopyala
Olgun R., Karakuş N., Selim S., Yılmaz T., Erdoğan R., Aklıbaşında M., ...Daha Fazla
LAND, cilt.14, sa.1274, ss.1-30, 2025 (SSCI)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
14
Sayı:
1274
-
Basım Tarihi:
2025
-
Doi Numarası:
10.3390/land14061274
-
Dergi Adı:
LAND
-
Derginin Tarandığı İndeksler:
Social Sciences Citation Index (SSCI), Scopus, Agricultural & Environmental Science Database, CAB Abstracts, Veterinary Science Database, Directory of Open Access Journals
-
Sayfa Sayıları:
ss.1-30
-
Akdeniz Üniversitesi Adresli:
Evet
Özet
Surface urban heat island (SUHI) effects are intensifying in arid desert cities due to rapid urban expansion, limited vegetation, and increasing impervious and barren land surfaces. This leads to serious ecological and socio-environmental challenges in cities. This study investigates the relationship between landscape composition and land surface temperature (LST) in Phoenix and Tucson, two rapidly growing cities located in the Sonoran Desert of the southwestern United States. Landsat-9 OLI-2/TIRS-2 satellite imagery was used to derive the LST value and calculate spectral indices. A multi-resolution grid-based approach was applied to assess spatial correlations between land cover and mean LST across varying spatial scales. The strongest positive correlations were observed with barren land, followed by impervious surfaces, while green space showed a negative correlation. Furthermore, the Urban Thermal Field Variation Index (UTFVI) and the Ecological Evaluation Index (EEI) assessments indicated that over one-third of both cities are exposed to strong SUHI effects and poor ecological quality. The findings highlight the critical need for ecologically sensitive urban planning, emphasizing the importance of the morphological structure of cities, the necessity of planning holistic blue–green infrastructure systems, and the importance of reducing impervious surfaces to decrease LST, mitigate SUHI and SUHI impacts, and increase urban resilience in desert environments. These results provide evidence-based guidance for landscape planning and climate adaptation in hyper-arid urban environments.
Surface urban heat island (SUHI) effects are intensifying in arid desert cities due to rapid urban expansion, limited vegetation, and increasing impervious and barren land surfaces. This leads to serious ecological and socio-environmental challenges in cities. This study investigates the relationship between landscape composition and land surface temperature (LST) in Phoenix and Tucson, two rapidly growing cities located in the Sonoran Desert of the southwestern United States. Landsat-9 OLI-2/TIRS-2 satellite imagery was used to derive the LST value and calculate spectral indices. A multi-resolution grid-based approach was applied to assess spatial correlations between land cover and mean LST across varying spatial scales. The strongest positive correlations were observed with barren land, followed by impervious surfaces, while green space showed a negative correlation. Furthermore, the Urban Thermal Field Variation Index (UTFVI) and the Ecological Evaluation Index (EEI) assessments indicated that over one-third of both cities are exposed to strong SUHI effects and poor ecological quality. The findings highlight the critical need for ecologically sensitive urban planning, emphasizing the importance of the morphological structure of cities, the necessity of planning holistic blue–green infrastructure systems, and the importance of reducing impervious surfaces to decrease LST, mitigate SUHI and SUHI impacts, and increase urban resilience in desert environments. These results provide evidence-based guidance for landscape planning and climate adaptation in hyper-arid urban environments.