Lymphokine-activated killer cell susceptibility in epirubicin-resistant and parental human non-small cell lung cancer (NSCLC)


Ozkan A.

BIOLOGIA, cilt.62, sa.2, ss.232-237, 2007 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 62 Sayı: 2
  • Basım Tarihi: 2007
  • Doi Numarası: 10.2478/s11756-007-0040-5
  • Dergi Adı: BIOLOGIA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.232-237
  • Anahtar Kelimeler: non-small cell lung cancer, lymphokine-activated killer cells, epirubicin-HCl, antioxidants, BREAST-CANCER, GLUTATHIONE, CYTOTOXICITY, EXPRESSION, CARCINOMA, CISPLATIN, RAT, DOXORUBICIN, APOPTOSIS, TOXICITY
  • Akdeniz Üniversitesi Adresli: Evet

Özet

The aim of this study was to evaluate that: (i) epirubicin-HCl (EPI) and lymphokine-activated killer (LAK) cells cytotoxicity may be mediated by free radical generation; and (ii) resistant H1299 cells may be more sensitive to combined treatment of LAK cells plus EPI than the LAK or EPI treatment alone. Viability of H1299 cells treated with EPI, LAK and LAK plus EPI was measured using the MTT test. Amount of glutathione (GSH), protein content and enzymatic activity were measured by spectrophotometer. Glutathione S-transferase (GST)-pi expression in the cells was determined by western blot analysis. LAK plus EPI combined treatment increased susceptibility of H1299 WT and H1299 EPI(R) (300-fold EPI resistant) cells to LAK cell cytotoxicity. The resistance of H1299 EPI(R) cells to EPI appears to be associated with a developed tolerance to free radicals, most likely because of a 2-fold increase in NADPH-dependent-cytochrome-P450 reductase (NADPH-CYP reductase) activity, 11-fold GST activity and 11-and 7-fold augmented selenium dependent and independent glutathione peroxidase (GSH-Px) activity, respectively. Amount of GST-pi in H1299 EPI(R) cells is statistically different from negative control and H1299 WT (p < 0.01). It is proposed that production of reactive oxygen species and hydrogen peroxide by the treatment of EPI and LAK cells can cause cytotoxicity of H1299 WT and H1299 EPI(R) cells. Superoxide dismutase, catalase, GSH-Px, GST, NADPH-CYP reductase and GSH must be considered as part of the intracellular antioxidant defense mechanism of H1299 WT and H1299 EPI(R) cells against reactive oxygen species. Combined treatment of EPI plus LAK cells caused the increasing cytotoxicity on the H1299 EPI(R) cells.

The aim of this study was to evaluate that: (i) epirubicin-HCl (EPI) and lymphokine-activated killer (LAK) cells cytotoxicity may be mediated by free radical generation; and (ii) resistant H1299 cells may be more sensitive to combined treatment of LAK cells plus EPI than the LAK or EPI treatment alone. Viability of H1299 cells treated with EPI, LAK and LAK plus EPI was measured using the MTT test. Amount of glutathione (GSH), protein content and enzymatic activity were measured by spectrophotometer. Glutathione S-transferase (GST)-pi expression in the cells was determined by western blot analysis. LAK plus EPI combined treatment increased susceptibility of H1299 WT and H1299 EPI(R) (300-fold EPI resistant) cells to LAK cell cytotoxicity. The resistance of H1299 EPI(R) cells to EPI appears to be associated with a developed tolerance to free radicals, most likely because of a 2-fold increase in NADPH-dependent-cytochrome-P450 reductase (NADPH-CYP reductase) activity, 11-fold GST activity and 11-and 7-fold augmented selenium dependent and independent glutathione peroxidase (GSH-Px) activity, respectively. Amount of GST-pi in H1299 EPI(R) cells is statistically different from negative control and H1299 WT (p < 0.01). It is proposed that production of reactive oxygen species and hydrogen peroxide by the treatment of EPI and LAK cells can cause cytotoxicity of H1299 WT and H1299 EPI(R) cells. Superoxide dismutase, catalase, GSH-Px, GST, NADPH-CYP reductase and GSH must be considered as part of the intracellular antioxidant defense mechanism of H1299 WT and H1299 EPI(R) cells against reactive oxygen species. Combined treatment of EPI plus LAK cells caused the increasing cytotoxicity on the H1299 EPI(R) cells.