TURKIYE ENTOMOLOJI DERGISI-TURKISH JOURNAL OF ENTOMOLOGY, cilt.43, sa.2, ss.157-169, 2019 (SCI-Expanded)
The Mi-1 gene in tomato provides a safe and economical strategy for managing root-knot nematodes (RKN). However, the resistance conferred by the Mi-1 gene is not effective against virulent populations of RKNs. In this study, the efficacy of combining the dose effect of the Mi-1 gene with Bacillus firmus Bredemann & Wermer, 1933 (Bacillales: Bacillaceae) + fluopyram against Mi-1-virulent Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) after soil solarization was assessed for tomatoes grown in a greenhouse. The study was conducted in a greenhouse in Kepez, Antalya between 2015 and 2016. The second-stage juveniles M. incognita were not detected in the soil for 2 months after solarization completed. The reactions of homozygous or heterozygous resistant tomato plants against Mi-1-virulent populations were not statistically different under greenhouse conditions. Furthermore, B. firmus + fluopyram controlled the RKN population when applied to the soil both during the planting period and when J2 count in the soil started to increase. This study suggests that the soil solarization should be combined with other management methods, and the dose effect of the Mi-1 gene is not important against virulent RKN populations. Additionally, combined B. firmus + fluopyram have the potential to be used as a suitable management tool for RKN control in tomato production. These findings will help improve integrated management practices for controlling Mi-1-virulent RKN populations.