EURASIAN SOIL SCIENCE, cilt.43, sa.1, ss.62-71, 2010 (SCI-Expanded)
Soil hydraulic properties are needed in the modeling of water flow and solute movement in the vadose zone. Pedotransfer functions (PTFs) have received the attention of many researchers for indirect determination of hydraulic properties from basic soil properties as an alternative to direct measurement. The objective of this study was to compare the performance of cascade forward network (CFN), multiple-linear regression (MLR), and seemingly unrelated regression (SUR) methods using prediction capabilities of point and parametric PTFs developed by these methods. The point PTFs estimated field capacity (FC), permanent wilting point (PWP), available water capacity (AWC), and saturated hydraulic conductivity (Ks) and the parametric PTFs estimated the van Genuchten retention parameters. A total of 180 soil samples was extracted from the UNSODA database and divided into two groups as 135 for the development and 45 for the validation of the PTFs. The model performances were evaluated with three statistical tools: the maximum error (ME), the model efficiency (EF), and the D index (D) using the observed and predicted values of a given parameter. Despite the fact that the differences among the three methods in prediction accuracies of the point and parametric PTFs were not statistically significant (p > 0.05) except theta(r) and alpha (p < 0.05) based on the ANOVA test, overall MLR and SUR were somewhat better than CFN in prediction of the point PTFs, whereas CFN performed better than the other two methods in prediction of the parametric PTFs. The F.F values of FC and theta(r) for CFN, MLR, and SUR methods were 0.705. 0.805, 0.795 and 0.356, -0.290, -0.290, respectively, which refer to the best and worst predictions. Properties (Ks, theta(r), alpha) having some difficulty in prediction were better predicted by CFN and SUR methods, where these methods predict all hydraulic properties from basic soil properties simultaneously rather than individually as in MLR. This suggests that multivariate analysis using such functional relationships between hydraulic properties and basic soil properties can be utilized in developing more accurate point and parametric PTFs with less time and effort.