Multiple Interpolation Functions of Higher Order (h, q)-Bernoulli Numbers


Simsek Y.

International Conference on Numerical Analysis and Applied Mathematics, Psalidi, Yunanistan, 16 - 20 Eylül 2008, cilt.1048, ss.486-489 identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası: 1048
  • Doi Numarası: 10.1063/1.2990969
  • Basıldığı Şehir: Psalidi
  • Basıldığı Ülke: Yunanistan
  • Sayfa Sayıları: ss.486-489
  • Anahtar Kelimeler: Bernoulli polynomials, Volkenborn integral, (h, q)-Bernoulli numbers and polynomials, multiple (h, q)-zeta function, Q-EULER NUMBERS, TWISTED (H, BERNOULLI, IDENTITIES, ZETA
  • Akdeniz Üniversitesi Adresli: Evet

Özet

The aim of this paper is to construct multiple interpolation functions of (h, q)-Bernoulli numbers and polynomials of higher order. Furthermore, we give alternating sums of powers of consecutive (h, q)-integers. By using p-adic q-Volkenborn integral, we obtain distribution relations of the (h, q)-Bernoulli polynomials of higher order.