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ABSTRACT

Let M be a left R-module and F a submodule of M for any ring R. We call M

F-semiregular if for every x 2 M, there exists a decomposition M ¼ A� B such
that A is projective, A � Rx and Rx \ B � F . This definition extends several
notions in the literature. We investigate some equivalent conditions to F-semire-

gular modules and consider some certain fully invariant submodules such as
ZðMÞ; SocðMÞ; dðMÞ. We prove, among others, that if M is a finitely generated
projective module, then M is quasi-injective if and only if M is ZðMÞ-semiregular

and M �M is CS. If M is projective SocðMÞ-semiregular module, then M is
semiregular. We also characterize QF-rings R with JðRÞ2 ¼ 0.
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1. INTRODUCTION

Perfect, semiperfect and semiregular (or f-semiperfect) rings constiture the class
of rings that posses beautiful homological and non homological properties. The con-
cept of semiperfect rings has been generalized to semiperfect modules by Mares
(1963). Mares calls a module M a semiperfect module if every quotient of M has
a projective cover. Nicholson (1976) proves that a projective moduleM is semiperfect
if and only if it is semiregular, RadðMÞ�M and M=RadðMÞ is semisimple. Semire-
gular modules are known as a unified generalization of semiperfect modules and reg-
ular modules of Zelmanowitz. There has been a great deal of work on semiregular
modules by several authors (e.g., Azumaya, 1991; Nicholson, 1976; Wisbauer, 1991;
Xue, 1995).

Zhou (2000) defines d-semiregular and d-semiperfect rings as a generalization of
semiregular and semiperfect rings. On the other hand, Nicholson and Yousif (2001)
consider I-semiregular rings for an ideal I of a ring R and study ZðRRÞ-semiregular
rings. Now in this paper, we define F-semiregular modules M for a submodule F of a
module M and consider some certain fully invariant submodules such as ZðMÞ;
SocðMÞ; dðMÞ (is defined in Zhou, 2000).

If M is semiregular, then for every x 2 M there exists a decomposition M ¼
A� B such that A � Rx is projective and B \ Rx � M or equivalently B \ Rx �
RadðMÞ. Therefore, here we may consider any (fully invariant) submodule F or M
instead of RadðMÞ, and we denote such modules as F-semiregular modules. In
Sec. 2, we investigate the equivalent conditions to F-semiregular modules inspired
by Nicholson and Yousif ’s results. Some of their results are directly generalized
but some are not, and we define (S1) and (S2) properties for them.

In Sec. 3, we consider Zð�Þ-semiregular modules. We prove that for a finitely gen-
erated projective moduleM;M is quasi-injective if and only if M is ZðMÞ-semiregular
and M �M is CS.

In the last section, we consider Socð�Þ-semiregular and dð�Þ-semiregular modules
and investigate the relationship between them. We prove that if M is a countably
generated dðMÞ-semiregular module with dðMÞ�d M then M is isomorphic to
a direct sum of projective cyclic submodules of M. Any projective SocðMÞ-
semiregular module M is semiregular. And we characterize left Artinian rings R with
JðRÞ2 ¼ 0 and quasi-Frobenius (QF) rings R with JðRÞ2 ¼ 0. At the end of the paper,
we give some counter examples.

Throughout this paper, R denotes an associative ring with identity and modules
M are unitary left R-modules. For a module M;RadðMÞ and ZðMÞ are the Jacobson
radical and the singular submodule of M. We write JðRÞ for the Jacobson radical of
R. The dual of M is denoted by M� ¼ HomRðM;RÞ. A submodule N of M is called
small in M, denoted by N �M, whenever for any submodule L of M;N þ L ¼ M

implies L ¼ M. Dually we use N �e M to signify that N is an essential submodule
of M. For a direct summand K of M we write K�� M.

A submodule N of a module M is said to lie over a summand of M if there exists
a decomposition M ¼ A� B such that A � N and B \ N is small in M. An element x
in M is called regular if (xa) x ¼ x for some a 2 M�. Zelmanowitz (1973) calls a
module regular if each of its elements is regular, equivalently if every finitely
generated submodule is a projective summand. Nicholson (1976) calls an element
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x and M semiregular if Rx lies over a projective summand of M. A module called
semiregular if each of its elements is semiregular.

2. F-SEMIREGULAR MODULES

In this chapter, we investigate some equivalent conditions to F-semiregular
modules.

Definition 2.1. Let F be a submodule of an R-module M. An element x in M is said
to be F-semiregular in M if there exists a decomposition M ¼ A� B such that A is
projective, A � Rx and Rx \ B � F . A module M is called an F-semiregular module
if every elements x in M is F-semiregular.

Clearly the class of F-semiregular modules contains all regular modules. Also M

is semiregular if and only if M is RadðMÞ-semiregular. If M is semiregular and F is a
submodule of M such that RadðMÞ � F then M is F-semiregular. For M ¼ R and an
ideal F ¼ I, I-semiregularity of rings is defined by Nicholson and Yousif (2001). Now
we consider the module theoretic version of some results of Nicholson and Yousif.

Proposition 2.2. Let F be a submodule of a module M. Then the following condi-
tions are equivalent for x 2 M.

(1) x is F-semiregular.
(2) There exists a 2 M� such that ðxaÞ2 ¼ xa and x� ðxaÞx 2 F .
(3) There exists a homomorphism g from M to Rx such that g2 ¼ g;Mg is

projective and x� xg 2 F .

When these conditions hold we have

(4) There exists a regular element y 2 Rx such that x� y 2 F and Rx ¼
Ryðx� yÞ. If F is fully invariant then (1)–(3) are equivalent to (4).

Proof. ð1Þ ) ð2Þ. Suppose for x in M there exists a decomposition M ¼ A� B

such that A is projective, A � Rx and Rx \ B � F . Then there exist xi 2 A and
ai 2 A� ¼ HomRðA;RÞ ði ¼ 1; . . . ; n) such that y ¼

Pn
i¼1ðyaiÞxi for any y 2 A. Hence

ai extends to M by ðaþ bÞbi ¼ aai. Write xi ¼ rix with ri 2 R and let a ¼
P

biri.
Then a 2 M�. Write x ¼ aþ b with a 2 A; b 2 B. We get ðxaÞx ¼

P
ðxbiÞrix ¼P

ðaaiÞxi ¼ a. Therefore, x� a ¼ x� ðxaÞx ¼ b 2 Rx \ B � F .

ð2Þ ) ð3Þ. Let x and a be as in (2) and let y ¼ ðxaÞx: Then y ¼ ðyaÞy: By
Nicholson (1976, Lemma 1.1), Ry is a projective submodule of Rx and
M ¼ Ry�W where W ¼ fw 2 M : ðwaÞy ¼ 0g. Let g : M ! Ry be the projection
map. Hence it is sufficient to show that x� xg 2 F . Write x ¼ ryþ w 2 M where
r 2 R and w 2 W . Then 0 ¼ ðx� ryÞay ¼ ðxaÞy� rðyaÞy ¼ ðxaÞy� ry, so xg ¼
ry ¼ ðxaÞy ¼ y. Therefore, x� xg ¼ x� y 2 F :

ð3Þ ) ð1Þ. Suppose (3) holds. Then M ¼ Mg�Mð1� gÞ and Rx \Mð1� gÞ ¼
Rxð1� gÞ � F .
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ð2Þ ) ð4Þ. Let x; a; y and W be as in ð2Þ ) ð3Þ. Then W \ Rx ¼ Rðx� yÞ.
Therefore, Rx ¼ Ry� Rðx� yÞ:

ð4Þ ) ð1Þ. Assume F is fully invariant. Let x and y be as in (4) and let a 2 M�

be such that ðyaÞy ¼ y. Then M ¼ Ry�W where W ¼ fw 2 M : ðwaÞy ¼ 0g. Hence,
Rx ¼ Ry� ðRx \WÞ. Let p : M ! W be the projection map. Then Rx \W ¼
ðRx \WÞp ¼ ðRxÞp ¼ ðRðx� yÞÞp � ðFÞp � F . This completes the proof. &

Taking M ¼ R and F ¼ I an ideal of R yields (Nicholson and Yousif,
2001, Lemma 1.1). Our next results gives the characterization of F-semiregular
modules.

Theorem 2.3. Let F be a fully invariant submodule of a module M. Then the
following conditions are equivalent.

(1) M is F-semiregular.
(2) For any finitely generated submodule N ofM, there exists a homomorphism

g from M to N such that g2 ¼ g;Mg is projective and Nð1� gÞ � F .
(3) For any finitely generated submodule N of M, there exists a decomposition

M ¼ A� B such that A is a projective submodule of N and N \ B � F .
(4) For any finitely generated submodule N of M, N can be written as

N ¼ A� S where A is a projective summand of M and S � F .

When these conditions hold we have

(5) For all x 2 M, there exists a regular element y 2 M such that x� y 2 F .
(6) Every submodule of M that is not contained in F contains a regular

element not in F .
(7) RadðMÞ � F and ZðMÞ � F .

Proof. ð1Þ ) ð2Þ. Let N be a finitely generated submodule with generators
x0; . . . ; xn. We use the induction on the generating set. By assumption choose
b : M ! Rxn such that b2 ¼ b; Mb is projective and ðxnÞð1� bÞ 2 F . Set
K ¼ Rx0ð1� bÞ þ � � � þ Rxn�1ð1� bÞ and by induction choose a : M ! K such that
a2 ¼ a; Ma is projective and Kð1� aÞ � F . Define g ¼ bþ a� ba. Then g ¼ g2 and
Mg ¼ Mb�Ma since ab ¼ 0. Hence Mg is projective. It is enough to show that
Nð1� gÞ � F . Since N ¼ K þ Rxn it follows that Mg ¼ MbþMa � Rxn þ K ¼ N .
Take n ¼ aþ rxn 2 N as a 2 K and rxn 2 K and rxn 2 Rxn: ðaþ rxnÞð1� gÞ ¼
ða þ rxnÞð1 � bÞð1 � aÞ ¼ ðað1 � bÞ þ rxnð1 � bÞÞð1 � aÞ ¼ að1 � aÞ þ ðrxnð1 � bÞÞ
ð1� aÞ 2 F . Therefore Nð1� gÞ � F .

ð2Þ ) ð3Þ. Let N and g be as in (2). Then N \ ðMÞð1� gÞ ¼ Nð1� gÞ. Hence,
M ¼ Mg�Mð1� gÞ;Mg is projective and N \ ðMÞð1� gÞ ¼ Nð1� gÞ � F :

ð3Þ ) ð2Þ. Let N be a finitely generated submodule of M. By (3), M ¼ A� B

where A is a projective submodule of N and N \ B � F . Then N ¼ A� ðB \ NÞ.
Now consider the projection map p : M ! A. Let g ¼ pi where i is the inclusion
map from A to N . Then g2 ¼ g, Mg ¼ A is projective and Nð1� gÞ � F .

ð3Þ ) ð4Þ. It is clear.
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ð4Þ ) ð1Þ. Let N be a cyclic submodule of M. Then N ¼ A� S with A a projec-
tive summand of M and S � F . Then M ¼ A� B for some B. Let p : M ! B be the
projection map. Then N ¼ A� ðN \ BÞ and N \ B ¼ ðNÞp ¼ ðSÞp � ðFÞp � F .

ð1Þ ) ð5Þ and (1) ) (6) are by Proposition 2.2(4).

ð1Þ ) ð7Þ. Note that every cyclic submodule of RadM is small in M and every
projective singular module is a zero module, so (7) follows from (6) and (Nicholson,
1976, Lemma 1.1). &

Observe that ð2Þ , ð3Þ ) ð1Þ holds for any submodule F of a module M.
Note that if I is an ideal of a ring R then IM is a fully invariant submodule of M.
Theorem 1.2 in Nicholson and Yousif (2001) follows from Theorem 2.3 by

taking M ¼ R and F ¼ IM.
Nicholson and Yousif (2001) give a counter example showing that condition (5)

in Theorem 2.3 does not imply I-semiregularity by taking M ¼ R ¼ Z and I ¼ 2Z.
In Theorem 2.6, we give the equivalence under some conditions. First we give some
definitions.

Zhou (2000) defines that a submodule N of a module M is called d-small in M if
N þ K 6¼ M for any proper submodule K of M=K singular, denoted by N �d M.

Lemma 2.4 (Zhou, 2000, Lemma 1.2). Let N be a submodule of a module M. Then
N �d M if and only if M ¼ X � Y for a projective semisimple submodule Y with
Y � N whenever X þ N ¼ M.

Also Zhou introduces the following fully invariant submodule of a module M.

dðMÞ ¼
\

fN � M : M=N is singular simpleg:

Then dðMÞ is the sum of all d-small submodules of M by Zhou (2000, Lemma
1.5), and hence RadðMÞ � dðMÞ. If every proper submodule of M is contained in
a maximal submodule of M, then dðMÞ �d M.

Let F be a submodule of a module M. Then F is said to satisfy

ðR1Þ If for every summand A of M, A \ F lies over a summand of M.
ðR2Þ If for every regular element y in M, Ry \ F lies over a summand of M.
ðS1Þ If for every summand N of M, there exists a decomposition M ¼ A� B

such that A � N \ F and B \ N \ F �d M.
ðS2Þ If for every regular element y in M, there exists a decomposition

M ¼ A� B such that A � Ry \ F and B \ Ry \ F �d M.

Clearly ðR1Þ ) ðR2Þ and ðS1Þ ) ðS2Þ. For M ¼ R; ðR1Þ , ðR2Þ and ðS1Þ , ðS2Þ.
If F � dðMÞ then Ry \ F � Ry \ dðMÞ ¼ dðRyÞ �d M for any regular element y 2 M.
Hence F satisfies ðS2Þ. If F �d M, then F satisfies ðS1Þ. We also have the following
diagram.

ðR1Þ ¼) ðR2Þ
+ +

ðS1Þ ¼) ðS2Þ
In general ðS1Þ does not imply ðR1Þ and ðS2Þ does not imply ðR2Þ.
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Example 2.5. Let T be the infinite product of Fi, where each Fi ¼ Z2 and let R be
the subring of T generated by

L
i�1 Fi and the identity of T . Then dðRRÞ ¼

SocðRRÞ satisfies ðS1Þ but not ðR2Þ.

Theorem 2.6. Let F be a fully invariant submodule of a module M and satisfy ðS2Þ.
Let x 2 M. If there exists a regular element y 2 M such that x� y 2 F , then x is
F-semiregular.

Proof. Let x 2 M. By assumption there exists a regular element y 2 M such that
x� y 2 F and there is a decomposition M ¼ K � L such that K � F \ Ry and
F \ Ry \ L �d M. Since y is regular we have M ¼ Ry�W for a submodule W of
M and Ry is projective. It follows that M ¼ ðRy \ LÞ � K �W and
F ¼ ðRy \ L \ FÞ � K � ðW \ FÞ as F is fully invariant. On the other hand,
F \ Ry \ L �d Ryþ F ¼ Rxþ F as x� y 2 F and Ry �� M. Then, by Lemma 2.4,
Rxþ F ¼ ðRxþ K þ ðW \ FÞÞ �D for a projective semisimple submodule D of
F \ Ry \ L. Then Ry \ L ¼ E�D where E ¼ ðRy \ LÞ \ ðRxþ K þ ðW \ FÞÞ.

Let p be the projection map from M to E. Then E ¼ ðRyþ FÞp ¼ ðRxþ FÞp ¼
ðRxÞp. Since a :¼ pjRx is an epimorphism and E is projective, a splits. Then there
exists p0 : E ! Rx such that p0a ¼ 1 and Rx ¼ Imp0 � KerðaÞ. Let A :¼ Imp0: Since
KerðaÞ \ A ¼ 0 and A � Rx, KerðpÞ \ A ¼ 0. Also ðAÞp ¼ E. Hence pjA is an
isomorphism. By Proposition 5.5 in Anderson and Fuller (1974) we have M ¼
A� D� K �W and then A ffi E is projective. On the other hand, ðW þ K þDÞ \
Rx � ðW þ FÞ \ ðRxþ FÞ ¼ F þ ðW \ ðRxþ FÞÞ ¼ F þ ðW \ ðRyþ FÞÞ ¼ F þ ðW \
ðRyþ ðW \ FÞÞÞ ¼ F . Hence the proof is completed. &

Corollary 2.7. Let F be a fully invariant submodule of a module M and satisfy
ðS2Þ. Then the following conditions are equivalent.

(1) M is F-semiregular.
(2) For all x 2 M, there exists a regular element y 2 M such that x� y 2 F .

Corollary 2.8. Let F be a fully invariant submodule of a module M and satisfy
ðS2Þ. If x� y 2 F and y is F-semiregular then x is F-semiregular.

Now we give that following lemma without proving because it can be seen by the
similar proof of Nicholson (1976, Lemma 1.9).

Lemma 2.9. Let F be a fully invariant submodule of a module M. Let x 2 M.
If a 2 M� is such that ðxaÞ2 ¼ xa and x� ðxaÞx is F-semiregular, then x is F-
semiregular.

By the argument in Nicholson (1976, Theorem 1.10) and Corollary 2.8, we have

Theorem 2.10. Let F be a fully invariant submodule of a module M and M ¼L
i2I Mi for submodules Mi. If M is F-semiregular then each Mi is Fi-semiregular

where Fi ¼ F \Mi. The converse is true if F satisfies ðS2Þ.
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Corollary 2.11. Let I be an ideal of a ring R with I � dðRRÞ. Then R is I-semiregular
if and only every projective R-module M is IM-semiregular.

Proof. Let M be a projective module. Then IM � dðMÞ by Zhou (2000, Lemma 1.9)
and so IM satisfies ðS2Þ. Since any projective module is a summand of a free module,
the proof is completed by Theorem 2.10. &

Nicholson proves the following theorem in case F ¼ RadðMÞ�M in Nicholson
(1976, Proposition 1.17). For a submodule N of M, if N �d M, then N satisfies ðS1Þ.
The converse of this property is not true, for example let M ¼ Zðp1Þ be the prüfer
p-group. RadðMÞ ¼ dðMÞ ¼ ZðMÞ ¼ M satisfies ðS1Þ but not d-small inM. Hence the
following theorem generalizes Nicholson (1976, Proposition 1.17).

Theorem 2.12. Let F be a fully invariant submodule of a module M. Consider the
following conditions.

(1) M is F-semiregular.
(2) (i) Every finitely generated submodule of M=F is a direct summand.

(ii) If M=F ¼ A=F � B=F where A=F is finitely generated, there exists a
decompsition M ¼ P �Q such that ðP þ FÞ=F ¼ A=F and ðQþ FÞ=
F ¼ B=F .

Then ð1Þ ) ð2ÞðiÞ. If M is projective, then ð1Þ ) ð2ÞðiiÞ. If M is projective and
F satisfies ðS1Þ, then ð2Þ ) ð1Þ.

Proof. ð1Þ ) ð2Þ. Suppose M is F-semiregular and let A=F � M=F be finitely
generated. Choose a finitely generated submodule N of M such that A=F ¼
ðN þ FÞ=F . By Theorem 2.3, there is a decomposition M ¼ C �D such that
N ¼ C � ðD \ NÞ and D \ N � F . Then A=F ¼ ðN þ FÞ=F ¼ ðC þ FÞ=F . Since
F ¼ ðF \DÞ � ðF \CÞ and ðDþ FÞ \ ðCþ FÞ ¼ ðDþ ðF \ CÞÞ \ ðCþ ðF \DÞÞ ¼ F ,
we get ðC þ FÞ=F � ðDþ FÞ=F ¼ M=F . This proves (i).

Now, assume M=F ¼ A=F � B=F where A=F is finitely generated. Choose N and
the decomposition of M as above. Then C þ B ¼ M. Since C is a summand of M,
apply Nicholson (1976, Lemma 1.16) to write M ¼ C �Q where Q � B. Then (ii)
follows because ðC þ FÞ=F ¼ A=F and ðQþ FÞ=F � B=F .

ð2Þ ) ð1Þ. Assume that M is projective and F satisfies ðS1Þ. Take a finitely
generated submodule N of M. By (2), M=F ¼ ðN þ FÞ=F � B=F for a submodule
B of M with F � B. Then there exists a decomposition M ¼ P �Q such that
ðP þ FÞ=F ¼ ðN þ FÞ=F and ðQþ FÞ=F ¼ B=F . Hence M ¼ N þQþ F . Since
F ¼ ðP \ FÞ � ðQ \ FÞ;M ¼ N þQþ ðP \ FÞ. Since F satisfies ðS1Þ, there exists a
decomposition P \ F ¼ K � S where K is a summand of M and S �d M. Then
M ¼ N þQþ K þ S ¼ ðN þQþ KÞ �D for a submodule D � S by Lemma 2.4.
Let T ¼ N þQþ K and so T is projective. Since for a submodule L, K � L ¼ P

and M ¼ P �Q ¼ K � L�Q we get that Q� K is a summand of T . It gives that
there is a decomposition T ¼ ðQ� KÞ � A where A � N by Nicholson (1976,
Lemma 1.16). Since ðQþ K þDÞ \ N � ðQþ FÞ \ ðN þ FÞ ¼ F , M is F-semiregular
by Theorem 2.3. &
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By the proof of Theorem 2.12 ð2 ) 1Þ, we get the following corollary.

Corollary 2.13. Let F be a fully invariant submodule of a module M and satisfy
ðS1Þ. If M is F-semiregular and M=F is Noetherian, then for any submodule N of
M there exists a decomposition M ¼ A� B such that A � N and N \ B � F .

3. THE SINGULAR SUBMODULE Z(M)

In this section, we consider the fully invariant submodule ZðMÞ for a module M.
An R-module M is called CS (or has (C1Þ), if every closed submodule is a

summand. Equivalently, M is CS if and only if every submodule is essential in a
summand of M. An R-module M has ðC2Þ if any submodule of M isomorphic to
a summand of M is itself a summand. M is called continous if M is CS and has
(C2) (Mohamed and Müller, 1990). A module M is said to be an ACS-module if for
every element a 2 M, Ra ¼ P � S where P is projective and S is singular (Nicholson
and Yousif, 2001).

By Corollary 2.11 a ring R is left ZðRRÞ-semiregular if and only if every projec-
tive module M is ZðMÞ-semiregular.

If R is left ZðRRÞ-semiregular, then ZðRRÞ satisfies ðR1Þ since ZðRRÞ � JðRÞ.
Furthermore

Proposition 3.1. Let M be a projective module with dðMÞ�d M. Then the following
conditions are equivalent.

(1) ZðMÞ satisfies ðR1Þ.
(2) ZðMÞ satisfies ðR1Þ.
(3) ZðMÞ � dðMÞ.
(4) ZðMÞ � RadðMÞ.

Proof. ð1Þ ) ð2Þ. It is clear.

ð2Þ ) ð3Þ. Since ZðMÞ \M ¼ ZðMÞ;ZðMÞ ¼ P � S where P is a summand of
M and S �d M. Since M is projective, P ¼ 0. Hence ZðMÞ�d M.

ð3Þ ) ð4Þ. Since ZðMÞ�d M and ZðMÞ is singular, ZðMÞ�M.

ð4Þ ) ð1Þ. It is clear. &

It is proved in Nicholson and Yousif (2001, Theorem 2.4) that a ring R is a left
ZðRRÞ-semiregular if and only if R is semiregular and JðRÞ ¼ ZðRRÞ if and only if R is
a left ACS-ring with ðC2Þ. Now we give the module theoretic version of this result.

Theorem 3.2. Let M be a finitely generated projective module. Then the following
conditions are equivalent.

(1) M is ZðMÞ-semiregular.
(2) M is semiregular and ZðMÞ ¼ RadðMÞ.
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(3) M is an ACS-module and every finitely generated (cyclic) projective
submodule of M is a summand.

(4) M is an ACS-module and M has ðC2Þ.

Proof. ð1Þ ) ð2Þ. If M is ZðMÞ-semiregular, then RadðMÞ � ZðMÞ. For the
converse, let x 2 ZðMÞ. To show that x 2 RadðMÞ, let L � M be such that
M ¼ Rxþ L. Then M=Rx ffi L=ðRx \ LÞ is finitely generated. Let T be a finitely gen-
erated submodule of M such that L=ðRx \ LÞ ¼ ½T þ ðRx \ LÞ	=ðRx \ LÞ: Then
M ¼ Rxþ L ¼ Rxþ T : By Theorem 2.3, T has a decomposition T ¼ P � S where
P is a projective summand of M and S is singular. Then Rxþ S � ZðMÞ:
M ¼ Rxþ T ¼ Rxþ P þ S and then M=P is singular. Since M is projective,
P �e M (Nicholson and Yousif, 2001, Lemma 2.1). But this implies that P ¼ M,
because P �� M: Hence M ¼ T ¼ L: So Rx � M:

ð2Þ ) ð3Þ ) ð4Þ. They are clear.

ð4Þ ) ð1Þ. Since M is finitely generated projective, it is a summand of a finitely
generated free module F . Let A be such that F ¼ M � A and ffigni¼1 be a basis of F .
Write fi ¼ mi þ ai where mi 2 M; ai 2 A for all i ¼ 1; . . . ; n: Let x 2 M: By hypoth-
esis, Rx ¼ P � S where P is projective and S is singular. It is enough to show that P is
a summand of M. We have an epimorphism M ! Rx defined by m ¼ r1f1 þ � � � þ
rnfn ¼ r1m1 þ � � � þ rnmn 7! ðr1 þ � � � þ rnÞx;m 2 M; ri 2 R; 1 � i � n: Hence, we
have an epimorphism from M to P. This implies that P is isomorphic to a summand
of M. By (C2), P is a summand of M. &

It is well known that if R is left continuous then R is semiregular and
ZðRRÞ ¼ JðRÞ: By using Theorem 3.2, we prove the next result.

Theorem 3.3. Let M be a finitely generated projective module. If M is continuous,
then M is semiregular and ZðMÞ ¼ RadðMÞ:

Proof. It is enough to show that M is an ACS-module by Theorem 3.2. Let x 2 M:
Then there exists an epimorphism f : M ! Rx by the proof of ð4Þ) ð1Þ of Theorem
3.2. Since M is CS, there exists a summand L of M such that KerðfÞ is essential in L.
Let K be a submodule such that M ¼ L� K: Then we have isomorphisms
a : Rx ! M=KerðfÞ and b : M=L ! K: Let p denote the epimorphism from
M=KerðfÞ to M=L: Then g :¼ apb : Rx ! K is an epimorphism. Since K is projec-
tive, g splits. There exists a homomorphism h : K ! Rx such that Rx ¼
Imh� KerðgÞ. Rx=KerðgÞ ffi K ffi Imh is projective and KerðgÞ ¼ a�1ðL=KerðfÞÞ ffi
L=KerðfÞ is singular. Hence Rx is a direct sum of a projective module and a singular
module. &

It is well known that any finite direct sum of modules having (C2Þ need not have
(C2Þ. By Theorems 3.2 and 2.10, we have the following corollary.

Corollary 3.4. Let M be a finitely generated projective module. If M is ZðMÞ-
semiregular, then MðnÞ has ðC2Þ for every n � 1:
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The following corollary is a generalization of Yousif (1997, Proposition 1.21)
and Nicholson and Yousif (2001, Corollary 2.7).

Corollary 3.5. Let M be a finitely generated projective module. Then

(1) M is continuous if and only if M is ZðMÞ-semiregular and M is CS.
(2) The following are equivalent.

(a) M is quasi-injective.
(b) M is ZðMÞ-semiregular and M �M is CS.
(c) M has ðC2Þ and M �M is CS.
(d) M is continuous and M �M is CS.

Proof. (1) is clear by Theorems 3.2 and 3.3. (2) (a) ) (c). By Mohamed and Müller
(1990, Proposition 1.18). (c) ) (b). If M �M is CS, then M is CS. By Theorem 3.3, M
is ZðMÞ-semiregular. (b) ) (a). By Corollary 3.4, M �M has (C2Þ. Then M �M is
continuous. By Mohamed and Müller (1990, Theorem 3.16), M is quasi-injective.
(c) , (d) is clear. &

4. d(M) AND Soc(M)

In this section, we investigate dðMÞ-semiregular and SocðMÞ-semiregular
modules. If a module M is semiregular, then it is dðMÞ-semiregular since
RadðMÞ � dðMÞ. The converse is true for finitely generated modules M with
SocðMÞ ¼ RadðMÞ by Lemma 2.4. If M is a projective module then dðMÞ is equal
to the intersection of all essential maximal submodules of M (Zhou, 2000, Lemma
1.9), and hence SocðMÞ � dðMÞ. So any projective SocðMÞ-semiregular module M

is dðMÞ-semiregular. Also we will prove in Corollary 4.6 that projective SocðMÞ-
semiregular modules are semiregular. Then we have the following implications for
a projective module M.

M is SocðMÞ-semiregular¼)M is semiregular¼)M is dðMÞ-semiregular:

By Theorem 3.2, for a finitely generated projective module M, we have that

M is ZðMÞ-semiregular¼)M is semiregular¼)M is dðMÞ-semiregular:

For the converse implications we give the examples at the end of the paper.

Remark 4.1. (1) Zhou (2000, Theorem 3.5), proved that R is left dðRRÞ-semiregular
if and only if R=dðRRÞ is regular and idempotents can be lifted modulo dðRRÞ. Indeed
this result follows from Theorem 2.12 because dðRRÞ satisfies ðS2Þ.

(2) Also SocðRRÞ satisfies ðS2Þ, since SocðRRÞ � dðRRÞ. Hence R is left SocðRRÞ-
semiregular if and only if R=SocðRRÞ is regular and idempotents can be lifted modulo
SocðRRÞ. Baccella proved that for any ring R, idempotents can be lifted modulo
SocðRRÞ (see Yousif and Zhou, 2002, Lemma 1.2). Thus R is left SocðRRÞ-semiregular
if and only if R=SocðRRÞ is regular (see Yousif and Zhou, 2002, Theorem 1.6).
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By Corollary 2.11, a ring R is left SocðRRÞðdðRRÞÞ-semiregular if and only if
every projective module M is SocðMÞðdðMÞÞ-semiregular.

The next result is a structure theorem for countably generated dð�Þ-semiregular
modules.

Theorem 4.2. Let M be a countably generated dðMÞ-semiregular module. If dðMÞ is
d-small in M then M is isomorphic to a direct sum of projective cyclic submodules.

Proof. Let x1; x2; . . . be a generating set for M. There is a decomposition
M ¼ P1 �Q1 such that P1 � Rx1 is projective and K1 ¼ Q1 \ Rx1 is d-small in M.
As a summand of Rx1, the module P1 is cyclic. Now we use induction. Assume,
for a positive integer n, M has a decomposition M ¼ ð

Pn

i¼1 PiÞ �Qn such thatPn
i¼1 Rxi 
 ð

Ln
i¼1 PiÞ þ Kn, where Kn is d-small in M.

Since Qn is a summand of M and dðQnÞ ¼ Qn \ dðMÞ, Qn is dðQnÞ-semiregular.
Then there is a decomposition Qn ¼ Pnþ1 �Qnþ1 such that Pnþ1 � Rxnþ1 is projec-

tive and T ¼ Qnþ1 \ Rxnþ1 is d-small in Qn. Hence M ¼ ð
Pnþ1

i¼1 PiÞ �Qnþ1 andPnþ1
i¼1 Rxi 
 ð

Lnþ1
i¼1 PiÞ þ Knþ1, where Knþ1 ¼ Kn þ T is d-small in M. Since

K ¼
P

i2N Ki � dðMÞ, it is d-small in M and by Lemma 2.4 there exists a projective
semisimple submodule P of K such that M ¼

P
i2N Rxi ¼ ð

L
i2N PiÞ þ K ¼

ð
L

i2N PiÞ � P. The proof is completed. &

Corollary 4.3. Any finitely generated dðMÞ-semiregular module M is projective and
ZðMÞ � RadðMÞ.

Proof. By Theorem 2.3 and Proposition 3.1, ZðMÞ � RadðMÞ. &

Since every projective module is a direct sum of countably generated submodules
we have,

Corollary 4.4. Any projective dðMÞ-semiregular module M with dðMÞ �d M is
isomorphic to a direct sum of cyclic submodules.

We have mentioned that if M is a projective SocðMÞ-semiregular module then M

is dðMÞ-semiregular. These modules are also semiregular and hence this result is a
generalization of Yousif and Zhou (2002, Corollary 1.7(2)).

Theorem 4.5. If M is a SocðMÞ-semiregular module and ZðMÞ � RadðMÞ, then M

is semiregular.

Proof. Let x 2 M and M ¼ A� B where A � Rx is projective and Rx \ B �
SocðMÞ. Then Rx ¼ A� ðRx \ BÞ. Assume that Rx \ B has a simple submodule S1
such that S1 6� RadðMÞ, if not every simple submodule of Rx \ B is in RadðMÞ
and hence this completes the proof. Then S1 is a summand of M, and hence sum-
mand of B. Let L1 be such that B ¼ S1 � L1. Then Rx \ B ¼ S1 � ðRx \ L1Þ and
M ¼ A� S1 � L1. This implies that Rx ¼ ðA� S1Þ � ðRx \ L1Þ.
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Similarly since Rx \ L1 is semisimple assume that Rx \ L1 has a simple sub-
module S2 such that S2 6� RadðMÞ, if not again the proof is completed. Since S2 is
a summand of M, there exists a submodule L2 such that L1 ¼ S2 � L2. It follows that
Rx \ L1 ¼ S2 � ðRx \ L2Þ and M ¼ A� S1 � S2 � L2. Then Rx ¼ ðA� S1 � S2Þ�
ðL2 \ RxÞ. This process produces a strictly descending chain B \ Rx � L1 \ Rx �
L2 \ Rx � � � � : Since B \ Rx is semisimple and finitely generated, it is Artinian.
Hence this process must stop, so that Ln \ Rx � RadðMÞ for some positive integer
n. Hence Rx ¼ ðA� S1 � � � � � SnÞ � ðLn \ RxÞ. So M is semiregular. &

Corollary 4.6. Any projective SocðMÞ-semiregular module M is semiregular.

Proof. Since ZðMÞ � SocðMÞ, let S be a singular simple submodule of M. If
S 6� RadðMÞ, then S is a summand of M. This implies that S ¼ 0. Hence ZðMÞ �
RadðMÞ. By Theorem 4.5, M is semiregular. &

Corollary 4.7. Let M be a finitely generated SocðMÞ-semiregular module. Then M is
projective if and only if ZðMÞ � RadðMÞ.

Proof. It is clear by Theorem 4.5 and Corollary 4.3. &

Hence if M is a projective SocðMÞ-semiregular module then

ZðMÞ � RadðMÞ � SocðMÞ � dðMÞ:

If R is a left SocðRRÞ-semiregular ring, then dðRRÞ ¼ SocðRRÞ. For,
dðRRÞ=SocðRRÞ ¼ JðR=SocðRRÞÞ ¼ 0 (Zhou, 2000, Corollary 1.7). Also JðRÞ2 ¼ 0
because JðRÞSocðRRÞ ¼ 0. But this does not necessarily hold if R is semiregular.
For example there exists a local ring R such that JðRÞ is not nilpotent (see Zhou,
2000, Example 4.4 for the existence of such a ring). Then R is semiregular but
JðRÞ2 6¼ 0.

Proposition 4.8. If a module M is SocðMÞ-semiregular, then M is an ACS-module.

Proof. Let a 2 M. Then Ra ¼ A� B where A is a projective summand of M and
B � SocðMÞ. Let B ¼ B1 � B2 where B1 is a direct sum of projective simples and
B2 is a direct sum of singular simples. Then Ra ¼ A� B1 � B2 where A� B1 is
projective and B2 is singular. &

Next we consider the Noetherian SocðMÞ-semiregular modules.

Theorem 4.9. Any Noetherian Soc(M)-semiregular module M is Artinian.

Proof. If M is Noetherian SocðMÞ-semiregular, M=SocðMÞ is semisimple by
Theorem 2.12. Since M is Noetherian, M=SocðMÞ is Artinian and so M is Artinian.

&
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Corollary 4.10. The following conditions are equivalent for a ring R.

(1) R is a left Artinian ring with JðRÞ2 ¼ 0.
(2) R is a left Noetherian left SocðRRÞ-semiregular ring.

Proof. (2) ) (1). It is clear.

ð1Þ ) (2). Since the left annihilator of JðRÞ is SocðRRÞ, JðRÞ � SocðRRÞ. Left
Artinian rings are semiregular. Hence R is left SocðRRÞ-semiregular. &

From now on, we deal with SocðMÞ-semiregular modules M such that M has
(C2Þ or is min-CS or CS.

Proposition 4.11. Let M be a finitely generated projective module. Then the follow-
ing conditions are equivalent.

(1) M is SocðMÞ-semiregular with ðC2Þ.
(2) M is SocðMÞ-semiregular and ZðMÞ ¼ RadðMÞ.
(3) M is SocðMÞ-semiregular and every simple projective submodule of M is a

summand.
(4) M is ZðMÞ-semiregular and ZðMÞ � SocðMÞ.

Proof. (4) ) (1) and (4) ) (2) are clear. (1) ) (4) is by Theorem 3.2 and Proposi-
tion 4.8

ð2Þ ) ð3Þ. Let S be a projective simple submodule ofM. Then S 6� RadðMÞ and
hence S is a summand of M.

ð3Þ ) ð4Þ. Let x 2 M: Then M has a decompositon M ¼ A� B such that A is a
projective submodule of Rx and B \ Rx � SocðMÞ. Then Rx ¼ A� ðB \ RxÞ. Let
B \ Rx ¼ S1 � S2 where S1 is a finite direct sum of projective simples and S2 is a finite
direct sum of singular simples. Then S1 is a summand of B by the similar proof of
Mohamed and Müller (1990, Proposition 2.2). Hence A� S1 is a summand of M.
This implies that M is ZðMÞ-semiregular. &

By Theorems 2.10 and 3.2, if M is a finitely generated projective SocðMÞ-semi-
regular module with ðC2Þ, then MðnÞ is SocðMðnÞÞ-semiregular and has ðC2Þ for every
n � 1:

For the following corollary see also Yousif and Zhou (2002, Theorem 2.11).

Corollary 4.12. The following conditions are equivalent for a ring R.

(1) R is left SocðRRÞ-semiregular, R=SocðRRÞ is Noetherian and any projective
semisimple left ideal is a summand.

(2) R is semiprimary and JðRÞ ¼ ZðRRÞ � SocðRRÞ.

Proof. (1) ) (2). By Corollary 2.13 and the hypothesis, R is semiperfect. Since
JðRÞ2 ¼ 0; R is semiprimary. By Proposition 4.11, JðRÞ ¼ ZðRRÞ.
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ð2Þ ) ð1Þ. Since R is semiprimary, it is semiregular and R=J(R) is semisimple
Artinian. Since JðRÞ � SocðRRÞ; R is left SocðRRÞ-semiregular and R=SocðRRÞ
is Noetherian. Since JðRÞ ¼ ZðRRÞ; any projective semisimple left ideal is a
summand. &

A module M is called a min-CS module if every simple submodule of M is essen-
tial in a summand of M. A ring R is called left min-CS ring if RR is a min-CS module.

Proposition 4.13. Let M be a Noetherian projective module. Then the following
conditions are equivalent.

(1) M is continuous and RadðMÞ � SocðMÞ:
(2) M is SocðMÞ-semiregualr, min-CS with ðC2Þ.

Proof. ð1Þ ) ð2Þ. It is clear by Theorem 3.3.

ð2Þ ) ð1Þ. We claim that M is CS. Let N be a submodule of M. Then N has a
decomposition N ¼ A� S such that A is a summand of M and S � SocðMÞ: Since M
is min-CS and by Mohamed and Müller (1990, Proposition 2.2), there exists a sum-
mand C of M such that S �e C. Then N �e A� C �� M: Hence M is CS. &

A ring R is called left Kasch if every simple left R-module is embedded in R, or
equivalently, for any maximal left ideal I in R, the right annihilator of I is nonzero.
By Therorem 4.9 and Yousif (1997, Theorem 1.16), we have the following corollary.

Corollary 4.14. Let R be a left Noetherian ring. The following conditions are
equivalent.

(1) R is left continuous with J(R) � SocðRRÞ.
(2) R is left SocðRRÞ-semiregular left min-CS and left ðC2Þ.

In this case R is a left Artinian left and right Kasch ring.

If a ring R is left Artinian left continuous left and right Kasch with
JðRÞ � SocðRRÞ; R need not be a QF-ring:

Example 4.15 (Björk, 1970). Given a field F and an isomorphism a 7! a from F !
F � F , let R be the right F-space on basis {1, t} with multiplication given by t2 ¼ 0
and at ¼ t a for all a 2 F . Then R is a local ring and the only right ideals are 0, JðRÞ
and R. Hence R is right Artinian right continuous and left and right Kasch. It follows
that JðRÞ ¼ SocðRRÞ ¼ SocðRRÞ. If dimF

ðFÞ � 2, then R is not left continuous (see
Yousif and Zhou, 2002, Example 2.17).

Theorem 4.16. Let M be a finitely generated module. Then the following conditions
are equivalent.

(1) M is CS and M=SocðMÞ is semisimple.
(2) M is CS Artinian and RadðMÞ � SocðMÞ.

4298 Alkan and Özcan



In addition if M is projective, (1) and (2) are equivalent to

(3) M is CS SocðMÞ-semiregular and M=SocðMÞ is Noetherian.

Proof. ð1Þ ) ð2Þ. Since M=SocðMÞ is semisimple, RadðMÞ � SocðMÞ. By Dung
et al. (1994, 5.15 and 18.7), M is Artinian.

ð2Þ ) ð1Þ. Since M is Artinian, M=RadðMÞ is semisimple.

ð2Þ ) ð3Þ. Since M is Artinian and projective, M is semiregular (Wisbauer,
1991, 41.15) and M=RadðMÞ is semisimple. Then M is SocðMÞ-semiregular and
M=SocðMÞ is semisimple.

ð3Þ ) ð1Þ. By Theorem 2.12, M=SocðMÞ is semisimple. &

Corollary 4.17. The following conditions are equivalent for a ring R.

(1) R is left CS left Artinian with JðRÞ2 ¼ 0.
(2) R is left CS left SocðRRÞ-semiregular and R=SocðRRÞ is left Noetherian.

Theorem 4.18. Let M be finitely generated projective module. The following condi-
tions are equivalent.

(1) M is Artinian quasi-injective and RadðMÞ � SocðMÞ.
(2) M has ðC2Þ, M �M is CS and M=SocðMÞ is semisimple.
(3) M is Noetherian Soc(M)-semiregular with ðC2Þ and M �M is min-CS.

Proof. ð1Þ ) ð2Þ. Since M is quasi-injective, M �M is CS by Mohamed and
Müller (1990, Proposition 1.18).

ð2Þ ) ð3Þ. Since M is CS and M=SocðMÞ is Artinian and Noetherian, M is
Artinian and Noetherian by Dung et al. (1994, 5.15 and 18.17). Since M is Artinian
and projective, it is semiregular (Wisbauer, 1991, 41.15). Since RadðMÞ � SocðMÞ; M
is SocðMÞ-semiregular.

ð3Þ ) ð1Þ. Then M �M is SocðM �MÞ-semiregular and by Proposition 4.11
and 4.13, ZðM �MÞ ¼ RadðM �MÞ and M �M is continuous. Hence M is quasi-
injective (Mohamed and Müller, 1990, Theorem 3.16). &

Note that a left self-injective (resp. right and left continuous) ring R such that
R=SocðRRÞ is left Noetherian is QF (Ara and Park, 1991). But there exists a Noether-
ian projective self-injective module which is not Artinian (see Dung et al., 1994,
Example in p. 87). Hence in the above theorem it is not enough for M to be Artinian
to assume that M=SocðMÞ is Noetherian.

Corollary 4.19. The following conditions are equivalent for a ring R.

(1) R is a QF-ring with JðRÞ2 ¼ 0.
(2) RR has ðC2Þ; RðR� RÞ is CS and R=SocðRRÞ is semisimple Artinian.
(3) R is left SocðRRÞ-semiregular, left Noetherian with left ðC2Þ and R� R is

left min-CS.
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Now we give the examples. First example shows that there is a projective module
M which is dðMÞ-semiregular but not semiregular hence not SocðMÞ-semiregular
(see Nicholson, 1976, Example 2.15).

Example 4.20. Let F be a field, I =
h
F F

0 F

i
and

M ¼ R ¼ fðx1; . . . ; xn; x; x; . . .Þ : n 2 N; xi 2 M2ðFÞ; x 2 Ig:

With component-wise operations, R is a ring.

dðRRÞ ¼ fðx1 . . . ; xn; x; x; . . .Þ : n 2 N; xi 2 M2ðFÞ; x 2 Jg where J ¼
0 F

0 0

� �
:

SocðRRÞ ¼ fðx1; . . . ; xn; 0; 0; . . .Þ : n 2 N; xi 2 M2ðFÞg

Thus,

R=SocðRRÞ ffi
F F

0 F

� �

and so R is not left SocðRRÞ-semiregular. Also by Example 2.15 in Nicholson (1976)
R is not semiregular, but dðRRÞ-semiregular by Example 4.3 in Zhou (2000).

If M is finitely generated projective ZðMÞ-semiregular, then M need not be
SocðMÞ-semiregular. Hence there is a module M which is semiregular but not
SocðMÞ-semiregular (see also Yousif and Zhou, 2002, Example 1.8).

Example 4.21. Let M ¼ R ¼ Z8. Then R is a self-injective ring, JðRÞ ¼ ZðRÞ ¼ 2R
and SocðRÞ ¼ 4R: Hence R is a ZðRÞ-semiregular ring by Nicholson and Yousif
(2001) but not SocðRÞ-semiregular since JðRÞ-semiregular is not contained in
SocðRÞ.

If M is SocðMÞ-semiregular then M need not be ZðMÞ-semiregular. The ring of
2 � 2 upper triangular matrices over a field is the example of such a module, see
Yousif and Zhou, 2002, Example 1.8).
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