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1. INTRODUCTION

Perfect, semiperfect and semiregular (or f-semiperfect) rings constiture the class
of rings that posses beautiful homological and non homological properties. The con-
cept of semiperfect rings has been generalized to semiperfect modules by Mares
(1963). Mares calls a module M a semiperfect module if every quotient of M has
a projective cover. Nicholson (1976) proves that a projective module M is semiperfect
if and only if it is semiregular, Rad(M) < M and M/Rad(M) is semisimple. Semire-
gular modules are known as a unified generalization of semiperfect modules and reg-
ular modules of Zelmanowitz. There has been a great deal of work on semiregular
modules by several authors (e.g., Azumaya, 1991; Nicholson, 1976; Wisbauer, 1991;
Xue, 1995).

Zhou (2000) defines o-semiregular and d-semiperfect rings as a generalization of
semiregular and semiperfect rings. On the other hand, Nicholson and Yousif (2001)
consider /-semiregular rings for an ideal I of a ring R and study Z(,R)-semiregular
rings. Now in this paper, we define F-semiregular modules M for a submodule F of a
module M and consider some certain fully invariant submodules such as Z(M),
Soc(M),5(M) (is defined in Zhou, 2000).

If M is semiregular, then for every x € M there exists a decomposition M =
A @ B such that A < Rx is projective and BN Rx < M or equivalently BN Rx <
Rad(M). Therefore, here we may consider any (fully invariant) submodule F or M
instead of Rad(M), and we denote such modules as F-semiregular modules. In
Sec. 2, we investigate the equivalent conditions to F-semiregular modules inspired
by Nicholson and Yousif’s results. Some of their results are directly generalized
but some are not, and we define (S;) and (S,) properties for them.

In Sec. 3, we consider Z(-)-semiregular modules. We prove that for a finitely gen-
erated projective module M, M is quasi-injective if and only if M is Z(M)-semiregular
and M @ M is CS.

In the last section, we consider Soc(-)-semiregular and J(-)-semiregular modules
and investigate the relationship between them. We prove that if M is a countably
generated J(M)-semiregular module with 6(M)<sM then M is isomorphic to
a direct sum of projective cyclic submodules of M. Any projective Soc(M)-
semiregular module M is semiregular. And we characterize left Artinian rings R with
J(R)? = 0 and quasi-Frobenius (QF) rings R with J(R)* = 0. At the end of the paper,
we give some counter examples.

Throughout this paper, R denotes an associative ring with identity and modules
M are unitary left R-modules. For a module M, Rad(M) and Z(M) are the Jacobson
radical and the singular submodule of M. We write J(R) for the Jacobson radical of
R. The dual of M is denoted by M* = Homg(M, R). A submodule N of M is called
small in M, denoted by N < M, whenever for any submodule L of M,N+L =M
implies L = M. Dually we use N <, M to signify that N is an essential submodule
of M. For a direct summand K of M we write K <® M.

A submodule N of a module M is said to lie over a summand of M if there exists
a decomposition M = A @ B such that A < N and BN N is small in M. An element x
in M is called regular if (xo) x = x for some o € M*. Zelmanowitz (1973) calls a
module regular if each of its elements is regular, equivalently if every finitely
generated submodule is a projective summand. Nicholson (1976) calls an element
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x and M semiregular if Rx lies over a projective summand of M. A module called
semiregular if each of its elements is semiregular.

2. F-SEMIREGULAR MODULES

In this chapter, we investigate some equivalent conditions to F-semiregular
modules.

Definition 2.1. Let F be a submodule of an R-module M. An element x in M is said
to be F-semiregular in M if there exists a decomposition M = A @ B such that A is
projective, A < Rx and Rx N B < F. A module M is called an F-semiregular module
if every elements x in M is F-semiregular.

Clearly the class of F-semiregular modules contains all regular modules. Also M
is semiregular if and only if M is Rad(M)-semiregular. If M is semiregular and F is a
submodule of M such that Rad(M) < F then M is F-semiregular. For M = R and an
ideal F = I, I-semiregularity of rings is defined by Nicholson and Yousif (2001). Now
we consider the module theoretic version of some results of Nicholson and Yousif.

Proposition 2.2. Let F be a submodule of a module M. Then the following condi-
tions are equivalent for x € M.

(1) x is F-semiregular.

(2) There exists o € M* such that (xa)* = xo and x — (xo)x € F.

(3) There exists a homomorphism y from M to Rx such that y> =y, My is
projective and x — xy € F.

When these conditions hold we have

(4) There exists a regular element y € Rx such that x —y € F and Rx =
Ry(x — y). If F is fully invariant then (1)—(3) are equivalent to (4).

Proof. (1) = (2). Suppose for x in M there exists a decomposition M = A® B
such that A is projective, A < Rx and RxN B < F. Then there exist x; € A and
u; € A* = Homg(A,R) (i =1,...,n) such that y = >, (yo;)x; for any y € A. Hence
o; extends to M by (a + b)f; = aw;. Write x; = r,x with r; € R and let a =) f;r;.
Then « € M*. Write x =a+b with a € A,b € B. We get (xa)x = (xf;)rix =
> (ao;)x; = a. Therefore, x —a = x — (xa)x =b € RxNB < F.

(2) = (3). Let x and « be as in (2) and let y = (xa)x. Then y = (yx)y. By
Nicholson (1976, Lemma 1.1), Ry is a projective submodule of Rx and
M =Ry® W where W={weM: (wa)y=0}. Let y: M — Ry be the projection
map. Hence it is sufficient to show that x — xy € F. Write x = ry+w € M where
reR and we W. Then 0= (x —ry)ay = (xa)y — r(ya)y = (xa)y — ry, so xy=
ry = (xa)y = y. Therefore, x —xy =x—y € F.

(3) = (1). Suppose (3) holds. Then M = My ® M(1 —y) and RxNM(1 —y) =
Rx(1 —y) <F.
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(2) = (4). Let x,a,y and W be as in (2) = (3). Then WNRx = R(x —y).
Therefore, Rx = Ry ® R(x — y).

(4) = (1). Assume F is fully invariant. Let x and y be as in (4) and let « € M*
be such that (yo)y = y. Then M = Ry & W where W = {w € M : (wa)y = 0}. Hence,
Rx=Ry® (RxNW). Let n: M — W be the projection map. Then RxNW =
(RxNW)r = (Rx)n = (R(x — y))n < (F)n < F. This completes the proof. ]

Taking M =R and F =1 an ideal of R yields (Nicholson and Yousif,
2001, Lemma 1.1). Our next results gives the characterization of F-semiregular
modules.

Theorem 2.3. Let F be a fully invariant submodule of a module M. Then the
following conditions are equivalent.

(1) M is F-semiregular.

(2) For any finitely generated submodule N of M, there exists a homomorphism
y from M to N such that y> =y, My is projective and N(1 —7y) < F.

(3) For any finitely generated submodule N of M, there exists a decomposition
M = A ® B such that A is a projective submodule of N and NN B < F.

(4) For any finitely generated submodule N of M, N can be written as
N =A@ S where A is a projective summand of M and S < F.

When these conditions hold we have

(5) For all x € M, there exists a regular element y € M such that x —y € F.

(6) Every submodule of M that is not contained in F contains a regular
element not in F.

(7) Rad(M) < F and Z(M) < F.

Proof. (1) = (2). Let N be a finitely generated submodule with generators
X0,-..,X,. We use the induction on the generating set. By assumption choose
B:M — Rx, such that f*>=p, Mp is projective and (x,)(1=p) € F. Set
K = Rxo(1 = )+ -+ Rx,_1(1 — ) and by induction choose «: M — K such that
o® = o, Ma is projective and K(1 — o) < F. Define y = f 4+ o — fo.. Then y = 9% and
My = Mp & Mo since off = 0. Hence My is projective. It is enough to show that
N(1 —y) <F. Since N =K + Rx, it follows that My = M + Mo < Rx, + K = N.
Take n=a+rx, € N as a€ K and rx, € K and rx, € Rx,. (a+rx,)(1 —7) =
(a+rxy)(1 = B)(1 —o) = (a(l = B) + rx,(1 = ))(1 — ) = a(l — o) + (rxa(1 = B))
(1 —a) € F. Therefore N(1 —y) < F.

(2) = (3). Let N and y be as in (2). Then NN (M)(1 —y) = N(1 — y). Hence,
M = My @ M(1 —y), My is projective and NN (M)(1 —y) = N(1 —y) <F.

(3) = (2). Let N be a finitely generated submodule of M. By (3), M =A@ B
where A is a projective submodule of N and NNB < F. Then N =A& (BN N).

Now consider the projection map n: M — A. Let y = ni where i is the inclusion
map from A to N. Then y?> =y, My = A is projective and N(1 —y) < F.

(3) = (4). Itis clear.
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(4) = (1). Let N be a cyclic submodule of M. Then N = A & S with A a projec-
tive summand of M and S < F. Then M = A @ B for some B. Let n : M — B be the
projection map. Then N=A@® (NNB)and NNB= (N)n = (S)n < (F)n < F.

(1) = (5) and (1) = (6) are by Proposition 2.2(4).

(1) = (7). Note that every cyclic submodule of Rad M is small in M and every
projective singular module is a zero module, so (7) follows from (6) and (Nicholson,
1976, Lemma 1.1). U

Observe that (2) < (3) = (1) holds for any submodule F of a module M.

Note that if 7 is an ideal of a ring R then IM is a fully invariant submodule of M.

Theorem 1.2 in Nicholson and Yousif (2001) follows from Theorem 2.3 by
taking M = R and F = IM.

Nicholson and Yousif (2001) give a counter example showing that condition (5)
in Theorem 2.3 does not imply /-semiregularity by taking M = R =Z and I = 2Z.
In Theorem 2.6, we give the equivalence under some conditions. First we give some
definitions.

Zhou (2000) defines that a submodule N of a module M is called J-small in M if
N + K # M for any proper submodule K of M/K singular, denoted by N <5 M.

Lemma 2.4 (Zhou, 2000, Lemma 1.2). Let N be a submodule of a module M. Then
N <Ls M if and only if M =X &Y for a projective semisimple submodule Y with
Y < N whenever X + N = M.

Also Zhou introduces the following fully invariant submodule of a module M.
o(M) = ﬂ{N < M : M/N is singular simple}.

Then 6(M) is the sum of all -small submodules of M by Zhou (2000, Lemma
1.5), and hence Rad(M) < 6(M). If every proper submodule of M is contained in
a maximal submodule of M, then 6(M) <5 M.

Let F be a submodule of a module M. Then F is said to satisfy

(Ry) If for every summand A of M, ANF lies over a summand of M.

(Ry) If for every regular element y in M, Ry N F lies over a summand of M.

(S1) If for every summand N of M, there exists a decomposition M = A ® B
such that A< NNFand BNNNF <5 M.

(S2) If for every regular element y in M, there exists a decomposition
M=A@Bsuchthat A< RynFand BONRyNF <; M.

Clearly (Rl) = (Rz) and (S]) = (Sz). For M =R, (Rl) = (Rz) and (S]) = (Sz).
If F < 6(M)then RyNF < RyNnd(M) = o(Ry) <5 M for any regular element y € M.
Hence F satisfies (S,). If F <5 M, then F satisfies (S;). We also have the following
diagram.

(R1) = (Ra)
U )
(51) = (%)

In general (S;) does not imply (R;) and (S,) does not imply (R3).
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Example 2.5. Let T be the infinite product of F;, where each F; = Z, and let R be
the subring of 7 generated by €D, F; and the identity of 7. Then J6(zR) =
Soc(gR) satisfies (S;) but not (R»).

Theorem 2.6. Let F be a fully invariant submodule of a module M and satisfy (S,).
Let x € M. If there exists a regular element y € M such that x —y € F, then x is
F-semiregular.

Proof. Let x € M. By assumption there exists a regular element y € M such that
x—y€F and there is a decomposition M = K@ L such that K < FNRy and
FNRyNL <5 M. Since y is regular we have M = Ry@® W for a submodule W of
M and Ry is projective. It follows that M =(RyNnL)® K& W and
F=(RyNLNF)®K® (WNF) as F is fully invariant. On the other hand,
FNRyNL <sRy+F=Rx+ Fas x—y¢€ F and Ry <% M. Then, by Lemma 2.4,
Rx+F=(Rx+ K+ (WNF))dD for a projective semisimple submodule D of
FNRyNL. Then RyNL =E® D where E=(RyNL)N(Rx+ K+ (WNF)).

Let 7 be the projection map from M to E. Then E = (Ry+ F)n = (Rx + F)n =
(Rx)m. Since o := 7|, is an epimorphism and E is projective, o splits. Then there
exists 7’ : E — Rx such that 7'« = | and Rx = Imn’ @ Ker(x). Let A := Imn’. Since
Ker()NA=0 and A <Rx, Ker(n)NA=0. Also (A)n =E. Hence n|, is an
isomorphism. By Proposition 5.5 in Anderson and Fuller (1974) we have M =
A® D@ K@ W and then A = E is projective. On the other hand, (W + K + D) N
Rx<(WH+F)N(Rx+F)=F+(WnN(Rx+F))=F+(WN(Ry+F))=F+(Wn
(Ry+ (WNF))) = F. Hence the proof is completed. ]

Corollary 2.7. Let F be a fully invariant submodule of a module M and satisfy
(S2). Then the following conditions are equivalent.

(1) M is F-semiregular.
(2) For all x € M, there exists a regular element y € M such that x —y € F.

Corollary 2.8. Let F be a fully invariant submodule of a module M and satisfy
(S2). If x—y € F and y is F-semiregular then x is F-semiregular.

Now we give that following lemma without proving because it can be seen by the
similar proof of Nicholson (1976, Lemma 1.9).

Lemma 2.9. Let F be a fully invariant submodule of a module M. Let x € M.
If w€ M* is such that (x«)* = xo and x — (xo)x is F-semiregular, then x is F-
semiregular.

By the argument in Nicholson (1976, Theorem 1.10) and Corollary 2.8, we have

Theorem 2.10. Let F be a fully invariant submodule of a module M and M =
@ie[ M; for submodules M;. If M is F-semiregular then each M; is F;-semiregular
where F; = F N M;. The converse is true if F satisfies (S»).
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Corollary 2.11. Let I be an ideal of a ring R with I < 6(xR). Then R is I-semiregular
if and only every projective R-module M is IM-semiregular.

Proof. Let M be a projective module. Then IM < §(M) by Zhou (2000, Lemma 1.9)
and so IM satisfies (S). Since any projective module is a summand of a free module,
the proof is completed by Theorem 2.10. O

Nicholson proves the following theorem in case F = Rad(M) < M in Nicholson
(1976, Proposition 1.17). For a submodule N of M, if N <5 M, then N satisfies (S)).
The converse of this property is not true, for example let M = Z(p™) be the priifer
p-group. Rad(M) = 6(M) = Z(M) = M satisfies (S;) but not -small in M. Hence the
following theorem generalizes Nicholson (1976, Proposition 1.17).

Theorem 2.12. Let F be a fully invariant submodule of a module M. Consider the
following conditions.

(1) M is F-semiregular.
(2) (1) Every finitely generated submodule of M/F is a direct summand.
(i) If M/F = A/F ® B/F where A/F is finitely generated, there exists a
decompsition M = P ® Q such that (P+ F)/F = A/F and (Q+F)/
F =BJF.

Then (1) = (2)(i). If M is projective, then (1) = (2)(ii). If M is projective and
F satisfies (S1), then (2) = (1).

Proof. (1) = (2). Suppose M is F-semiregular and let A/F < M/F be finitely
generated. Choose a finitely generated submodule N of M such that A/F =
(N+ F)/F. By Theorem 2.3, there is a decomposition M = C @ D such that
N=C®(DNN) and DNN<F. Then A/F=(N+F)/F=(C+F)/F. Since
F=(FND)®(FNC)and (D+F)N(C+F)=(D+(FNC))N(C+ (FND))=F,
we get (C+ F)/F & (D+ F)/F = M/F. This proves (i).

Now, assume M/F = A/F & B/F where A/F is finitely generated. Choose N and
the decomposition of M as above. Then C + B = M. Since C is a summand of M,
apply Nicholson (1976, Lemma 1.16) to write M = C ® Q where Q < B. Then (ii)
follows because (C+ F)/F = A/F and (Q + F)/F < B/F.

(2) = (1). Assume that M is projective and F satisfies (S;). Take a finitely
generated submodule N of M. By (2), M/F = (N + F)/F @ B/F for a submodule
B of M with F < B. Then there exists a decomposition M = P & Q such that
(P+F)/F=(N+F)/F and (Q+F)/F=B/F. Hence M =N+ Q+ F. Since
F=(PNF)®(QNF),M=N+Q+ (PNF). Since F satisfies (), there exists a
decomposition PNF =K & S where K is a summand of M and S <s M. Then
M=N+Q0+K+S=(N+Q+K)®D for a submodule D < S by Lemma 2.4.
Let T=N+Q+ K and so T is projective. Since for a submodule L, K& L =P
and M =P®»Q=K®dLPQ we get that Q ® K is a summand of 7. It gives that
there is a decomposition T=(Q P K) P A where A <N by Nicholson (1976,
Lemma 1.16). Since (Q+ K+ D)NN < (Q+ F)N(N + F) = F, M is F-semiregular
by Theorem 2.3. O
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By the proof of Theorem 2.12 (2 = 1), we get the following corollary.

Corollary 2.13. Let F be a fully invariant submodule of a module M and satisfy
(S1). If M is F-semiregular and M/F is Noetherian, then for any submodule N of
M there exists a decomposition M = A @® B such that A< N and NNB<F.

3. THE SINGULAR SUBMODULE Z(M)

In this section, we consider the fully invariant submodule Z(M) for a module M.

An R-module M is called CS (or has (C))), if every closed submodule is a
summand. Equivalently, M is CS if and only if every submodule is essential in a
summand of M. An R-module M has (C,) if any submodule of M isomorphic to
a summand of M is itself a summand. M is called continous if M is CS and has
(C2) (Mohamed and Miiller, 1990). A module M is said to be an ACS-module if for
every element a € M, Ra = P & S where P is projective and S is singular (Nicholson
and Yousif, 2001).

By Corollary 2.11 a ring R is left Z(,R)-semiregular if and only if every projec-
tive module M is Z(M)-semiregular.

If R is left Z(,R)-semiregular, then Z(,R) satisfies (R1) since Z(zR) < J(R).
Furthermore

Proposition 3.1. Ler M be a projective module with (M) <5 M. Then the following
conditions are equivalent.

(1) Z(M) satisfies (R}).
(2) Z(M) satisfies (Ry).
() Z(M) < o(M).

(4) Z(M) < Rad(M).

Proof. (1) = (2). Itis clear.

(2) = (3). Since Z(M)NM =Z(M),Z(M) = P& S where P is a summand of
M and S <5 M. Since M is projective, P = 0. Hence Z(M) <5 M.

(3) = (4). Since Z(M) <s M and Z(M) is singular, Z(M) < M.
(4) = (1). Itis clear. N
It is proved in Nicholson and Yousif (2001, Theorem 2.4) that a ring R is a left

Z(xR)-semiregular if and only if R is semiregular and J(R) = Z(RR) if and only if R is
a left ACS-ring with (C,). Now we give the module theoretic version of this result.

Theorem 3.2. Let M be a finitely generated projective module. Then the following
conditions are equivalent.

(1) M is Z(M)-semiregular.
(2) M is semiregular and Z(M) = Rad(M).
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(3) M is an ACS-module and every finitely generated (cyclic) projective
submodule of M is a summand.
(4) M is an ACS-module and M has (Cy).

Proof. (1)= (2). If M is Z(M)-semiregular, then Rad(M) < Z(M). For the
converse, let x € Z(M). To show that x € Rad(M), let L <M be such that
M = Rx+ L. Then M/Rx = L/(Rx N L) is finitely generated. Let T be a finitely gen-
erated submodule of M such that L/(RxNL)=[T+ (RxNL)]/(RxNL). Then
M =Rx+ L =Rx+ T. By Theorem 2.3, T has a decomposition 7 = P & S where
P is a projective summand of M and S is singular. Then Rx+ S < Z(M).
M=Rx+T=Rx+P+S and then M/P is singular. Since M is projective,
P <, M (Nicholson and Yousif, 2001, Lemma 2.1). But this implies that P = M,
because P <P M. Hence M =T =L. So Rx < M.

(2) = (3) = (4). They are clear.

(4) = (1). Since M is finitely generated projective, it is a summand of a finitely
generated free module F. Let A be such that F = M @ A and {f;}'_, be a basis of F.
Write f; = m; + a; where m; € M,a; € A for alli=1,...,n. Let x ¢ M. By hypoth-
esis, Rx = P & S where P is projective and S is singular. It is enough to show that P is
a summand of M. We have an epimorphism M — Rx defined by m = rifj +---+
Fofu=rmi+ - -+ rmy—(n+--+ r)x,meM,r,eR1<i<n. Hence, we
have an epimorphism from M to P. This implies that P is isomorphic to a summand
of M. By (C3), P is a summand of M. O

It is well known that if R is left continuous then R is semiregular and
Z(xR) = J(R). By using Theorem 3.2, we prove the next result.

Theorem 3.3. Let M be a finitely generated projective module. If M is continuous,
then M is semiregular and Z(M) = Rad(M).

Proof. 1t is enough to show that M is an ACS-module by Theorem 3.2. Let x € M.
Then there exists an epimorphism f : M — Rx by the proof of (4) = (1) of Theorem
3.2. Since M is CS, there exists a summand L of M such that Ker(f) is essential in L.
Let K be a submodule such that M =L @& K. Then we have isomorphisms
o:Rx — M/Ker(f) and f:M/L — K. Let n denote the epimorphism from
M/Ker(f) to M/L. Then g := anff : Rx — K is an epimorphism. Since K is projec-
tive, g splits. There exists a homomorphism #4: K — Rx such that Rx =
Imh @ Ker(g). Rx/Ker(g) = K = Im h is projective and Ker(g) = o' (L/Ker(f)) =
L/Ker(f) is singular. Hence Rx is a direct sum of a projective module and a singular
module. O

It is well known that any finite direct sum of modules having (C,) need not have
(C3). By Theorems 3.2 and 2.10, we have the following corollary.

Corollary 3.4. Let M be a finitely generated projective module. If M is Z(M)-
semiregular, then M) has (C,) for every n > 1.
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The following corollary is a generalization of Yousif (1997, Proposition 1.21)
and Nicholson and Yousif (2001, Corollary 2.7).

Corollary 3.5. Let M be a finitely generated projective module. Then

(1) M is continuous if and only if M is Z(M)-semiregular and M is CS.
(2) The following are equivalent.

(a) M is quasi-injective.

(b) M is Z(M)-semiregular and M & M is CS.
(¢) M has (Cy) and M ® M is CS.

(d) M is continuous and M & M is CS.

Proof. (1)is clear by Theorems 3.2 and 3.3. (2) (a) = (c). By Mohamed and Miiller
(1990, Proposition 1.18). (¢) = (b). If M & M is CS, then M is CS. By Theorem 3.3, M
is Z(M)-semiregular. (b) = (a). By Corollary 3.4, M & M has (C,). Then M & M is
continuous. By Mohamed and Miiller (1990, Theorem 3.16), M is quasi-injective.
(c) & (d) is clear. O

4. o(M) AND Soc(M)

In this section, we investigate &(M)-semiregular and Soc(M)-semiregular
modules. If a module M is semiregular, then it is o(M)-semiregular since
Rad(M) < 6(M). The converse is true for finitely generated modules M with
Soc(M) = Rad(M) by Lemma 2.4. If M is a projective module then J(M) is equal
to the intersection of all essential maximal submodules of M (Zhou, 2000, Lemma
1.9), and hence Soc(M) < 6(M). So any projective Soc(M)-semiregular module M
is 0(M)-semiregular. Also we will prove in Corollary 4.6 that projective Soc(M)-
semiregular modules are semiregular. Then we have the following implications for
a projective module M.

M is Soc(M)-semiregular = M is semiregular = M is 6(M)-semiregular.
By Theorem 3.2, for a finitely generated projective module M, we have that

M is Z(M)-semiregular => M is semiregular = M is 6(M)-semiregular.
For the converse implications we give the examples at the end of the paper.

Remark 4.1. (1) Zhou (2000, Theorem 3.5), proved that R is left (5 R)-semiregular
if and only if R/J(zR) is regular and idempotents can be lifted modulo 6(zR). Indeed
this result follows from Theorem 2.12 because 6(zR) satisfies (S5).

(2) Also Soc(xR) satisfies (S2), since Soc(zR) < d(zxR). Hence R is left Soc(RR)-
semiregular if and only if R/Soc(zR) is regular and idempotents can be lifted modulo
Soc(gxR). Baccella proved that for any ring R, idempotents can be lifted modulo
Soc(gxR) (see Yousif and Zhou, 2002, Lemma 1.2). Thus R is left Soc(,R)-semiregular
if and only if R/Soc(zR) is regular (see Yousif and Zhou, 2002, Theorem 1.6).



Semiregular Modules 4295

By Corollary 2.11, a ring R is left Soc(xR)(d(xR))-semiregular if and only if
every projective module M is Soc(M)(5(M))-semiregular.

The next result is a structure theorem for countably generated J(-)-semiregular
modules.

Theorem 4.2. Let M be a countably generated 6(M)-semiregular module. If 6(M) is
O-small in M then M is isomorphic to a direct sum of projective cyclic submodules.

Proof. Let xp,x;,... be a generating set for M. There is a decomposition
M = P; & Q; such that P; < Rx; is projective and K| = Q| N Rx; is d-small in M.
As a summand of Rx;, the module P; is cyclic. Now we use induction. Assume,
for a positive integer n, M has a decomposition M = (3}, P;) & Q, such that
Yoy Rx; C (DL, Pi) + K,, where K, is d-small in M.

Since Q, is a summand of M and §(Q,) = Q, NJ(M), Q, is 6(Q,)-semiregular.
Then there is a decomposition Q,, = P,.1 & Q.1 such that P,,; < Rx,. is projec-
tive and T = Q,41 N Rx,y is é-small in Q,. Hence M = (Zl”:ll P) ® Q0,41 and
Zfill Rx; C (EBI”LI P))+ K,+1, where K, 1 =K,+ T is oJ-small in M. Since
K =3 ,cnKi <(M),itis 6-small in M and by Lemma 2.4 there exists a projective
semisimple submodule P of K such that M =3, \Rxi=(P,cnPi) +K =
(P.cn Pi) © P. The proof is completed. O

Corollary 4.3. Any finitely generated 6(M)-semiregular module M is projective and
Z(M) < Rad(M).

Proof. By Theorem 2.3 and Proposition 3.1, Z(M) < Rad(M). O

Since every projective module is a direct sum of countably generated submodules
we have,

Corollary 4.4. Any projective 6(M)-semiregular module M with §(M) <s M is
isomorphic to a direct sum of cyclic submodules.

We have mentioned that if M is a projective Soc(M)-semiregular module then M
is 0(M)-semiregular. These modules are also semiregular and hence this result is a
generalization of Yousif and Zhou (2002, Corollary 1.7(2)).

Theorem 4.5. If M is a Soc(M)-semiregular module and Z(M) < Rad(M), then M
is semiregular.

Proof. Let xé M and M =A@ B where A < Rx is projective and RxNB <
Soc(M). Then Rx = A & (Rx N B). Assume that Rx N B has a simple submodule S|
such that S; € Rad(M), if not every simple submodule of RxN B is in Rad(M)
and hence this completes the proof. Then S; is a summand of M, and hence sum-
mand of B. Let L; be such that B= S, ® L,. Then RxNB =S, & (RxNL;) and
M =A® S| ® L;. This implies that Rx = (A S1) & (Rx N Ly).
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Similarly since Rx N L; is semisimple assume that Rx N L; has a simple sub-
module S, such that S, € Rad(M), if not again the proof is completed. Since S, is
a summand of M, there exists a submodule L, such that L; = S, @ L,. It follows that
RxNLi =85 & (RxNLy) and M=A® S 9 S @® L. Then Rx=(A® 518 5)®
(L, N Rx). This process produces a strictly descending chain BN Rx D L1 NRx D

LyNRx D ---. Since BN Rx is semisimple and finitely generated, it is Artinian.
Hence this process must stop, so that L, N Rx < Rad(M) for some positive integer
n. Hence Rx = (A® S ®---®S,) ® (L, NRx). So M is semiregular. O

Corollary 4.6. Any projective Soc(M)-semiregular module M is semiregular.

Proof. Since Z(M) < Soc(M), let S be a singular simple submodule of M. If
S € Rad(M), then S is a summand of M. This implies that S = 0. Hence Z(M) <
Rad(M). By Theorem 4.5, M is semiregular. O

Corollary 4.7. Let M be a finitely generated Soc(M)-semiregular module. Then M is
projective if and only if Z(M) < Rad(M).

Proof. 1t is clear by Theorem 4.5 and Corollary 4.3. O

Hence if M is a projective Soc(M)-semiregular module then
Z(M) < Rad(M) < Soc(M) < 6(M).

If R is a left Soc(zxR)-semiregular ring, then J(zxR) = Soc(zR). For,
3(zR)/Soc(zxR) = J(R/Soc(xR)) = 0 (Zhou, 2000, Corollary 1.7). Also J(R)* =0
because J(R)Soc(rR) = 0. But this does not necessarily hold if R is semiregular.
For example there exists a local ring R such that J(R) is not nilpotent (see Zhou,

2000, Example 4.4 for the existence of such a ring). Then R is semiregular but
J(R)* #£0.

Proposition 4.8. If a module M is Soc(M)-semiregular, then M is an ACS-module.

Proof. Let a € M. Then Ra = A ® B where A is a projective summand of M and
B < Soc(M). Let B= B; ® B, where B; is a direct sum of projective simples and
B, is a direct sum of singular simples. Then Ra = A @ B; & B, where A @ B) is
projective and B, is singular. O

Next we consider the Noetherian Soc(M)-semiregular modules.

Theorem 4.9. Any Noetherian Soc(M)-semiregular module M is Artinian.

Proof. If M is Noetherian Soc(M)-semiregular, M/Soc(M) is semisimple by
Theorem 2.12. Since M is Noetherian, M/Soc(M) is Artinian and so M is Artinian.
t
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Corollary 4.10. The following conditions are equivalent for a ring R.

(1) R isa left Artinian ring with J(R)2 =0.
(2) R isa left Noetherian left Soc(pR)-semiregular ring.

Proof. (2) = (1). Itis clear.

(1) = (2). Since the left annihilator of J(R) is Soc(zR), J(R) < Soc(zR). Left
Artinian rings are semiregular. Hence R is left Soc(,R)-semiregular. O

From now on, we deal with Soc(M)-semiregular modules M such that M has
(Cy) or is min-CS or CS.

Proposition 4.11. Let M be a finitely generated projective module. Then the follow-
ing conditions are equivalent.

(1) M is Soc(M)-semiregular with (C,).

(2) M is Soc(M)-semiregular and Z(M) = Rad(M).

(3) M is Soc(M)-semiregular and every simple projective submodule of M is a
summand.

(4) M is Z(M)-semiregular and Z(M) < Soc(M).

Proof. (4) = (1) and (4) = (2) are clear. (1) = (4) is by Theorem 3.2 and Proposi-
tion 4.8

(2) = (3). Let S be a projective simple submodule of M. Then S € Rad(M) and
hence S is a summand of M.

(3) = (4). Letx € M. Then M has a decompositon M = A @ B such that Aisa
projective submodule of Rx and BN Rx < Soc(M). Then Rx = A® (BN Rx). Let
BN Rx =8; &8, where S is a finite direct sum of projective simples and S is a finite
direct sum of singular simples. Then S| is a summand of B by the similar proof of
Mohamed and Miiller (1990, Proposition 2.2). Hence A @ S is a summand of M.
This implies that M is Z(M)-semiregular. O

By Theorems 2.10 and 3.2, if M is a finitely generated projective Soc(M)-semi-
regular module with (C,), then M is Soc(M"))-semiregular and has (C,) for every
n>1.

For the following corollary see also Yousif and Zhou (2002, Theorem 2.11).

Corollary 4.12. The following conditions are equivalent for a ring R.
(1) R isleft Soc(xR)-semiregular, R/Soc(gxR) is Noetherian and any projective
semisimple left ideal is a summand.

(2) R is semiprimary and J(R) = Z(xR) < Soc(gxR).

Proof. (1) = (2). By Corollary 2.13 and the hypothesis, R is semiperfect. Since
J(R)* = 0, R is semiprimary. By Proposition 4.11, J(R) = Z(gxR).
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(2) = (1). Since R is semiprimary, it is semiregular and R/J(R) is semisimple
Artinian. Since J(R) < Soc(zxR), R is left Soc(zR)-semiregular and R/Soc(izR)
is Noetherian. Since J(R) = Z(zR), any projective semisimple left ideal is a
summand. O

A module M is called a min-CS module if every simple submodule of M is essen-
tial in a summand of M. A ring R is called left min-CS ring if xR is a min-CS module.

Proposition 4.13. Let M be a Noetherian projective module. Then the following
conditions are equivalent.

(1) M is continuous and Rad(M) < Soc(M).
(2) M is Soc(M)-semiregualr, min-CS with (C5).

Proof. (1) = (2). Itis clear by Theorem 3.3.

(2) = (1). We claim that M is CS. Let N be a submodule of M. Then N has a
decomposition N = A & S such that A is a summand of M and S < Soc(M). Since M
is min-CS and by Mohamed and Miiller (1990, Proposition 2.2), there exists a sum-
mand C of M such that S <, C. Then N <, A® C <% M. Hence M is CS. O

A ring R is called left Kasch if every simple left R-module is embedded in R, or
equivalently, for any maximal left ideal 7 in R, the right annihilator of I is nonzero.
By Therorem 4.9 and Yousif (1997, Theorem 1.16), we have the following corollary.

Corollary 4.14. Let R be a left Noetherian ring. The following conditions are
equivalent.

(1) R is left continuous with J(R) < Soc(xR).
(2) R isleft Soc(yxR)-semiregular left min-CS and left (Cy).

In this case R is a left Artinian left and right Kasch ring.

If a ring R is left Artinian left continuous left and right Kasch with
J(R) < Soc(xR), R need not be a QF-ring:

Example 4.15 (Bjork, 1970). Given a field F and an isomorphism a — @ from F —
F C F, let R be the right F-space on basis {1, t} with multiplication given by > = 0
and at =t @ for all a € F. Then R is a local ring and the only right ideals are 0, J(R)
and R. Hence R is right Artinian right continuous and left and right Kasch. It follows
that J(R) = Soc(xR) = Soc(xR). If dimz (F) > 2, then R is not left continuous (see
Yousif and Zhou, 2002, Example 2.17).

Theorem 4.16. Let M be a finitely generated module. Then the following conditions
are equivalent.

(1) M is CS and M/Soc(M) is semisimple.
(2) M is CS Artinian and Rad(M) < Soc(M).
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In addition if M is projective, (1) and (2) are equivalent to
(3) M is CS Soc(M)-semiregular and M/Soc(M) is Noetherian.

Proof. (1) = (2). Since M/Soc(M) is semisimple, Rad(M) < Soc(M). By Dung
et al. (1994, 5.15 and 18.7), M is Artinian.

(2) = (1). Since M is Artinian, M/Rad(M) is semisimple.

(2) = (3). Since M is Artinian and projective, M is semiregular (Wisbauer,
1991, 41.15) and M/Rad(M) is semisimple. Then M is Soc(M)-semiregular and
M /Soc(M) is semisimple.

(3) = (1). By Theorem 2.12, M/Soc(M) is semisimple. O
Corollary 4.17. The following conditions are equivalent for a ring R.

(1) R is left CS left Artinian with J(R)* = 0.
(2) R isleft CS left Soc(gxR)-semiregular and R/Soc(xR) is left Noetherian.

Theorem 4.18. Let M be finitely generated projective module. The following condi-
tions are equivalent.

(1) M is Artinian quasi-injective and Rad(M) < Soc(M).
(2) M has (C2), M® M is CS and M/Soc(M) is semisimple.
(3) M is Noetherian Soc(M)-semiregular with (Cy) and M & M is min-CS.

Proof. (1) = (2). Since M is quasi-injective, M & M is CS by Mohamed and
Miiller (1990, Proposition 1.18).

(2) = (3). Since M is CS and M/Soc(M) is Artinian and Noetherian, M is
Artinian and Noetherian by Dung et al. (1994, 5.15 and 18.17). Since M is Artinian
and projective, it is semiregular (Wisbauer, 1991, 41.15). Since Rad(M) < Soc(M), M
is Soc(M)-semiregular.

(3) = (1). Then M @ M is Soc(M & M)-semiregular and by Proposition 4.11
and 4.13, Z(M ® M) = Rad(M ® M) and M ® M is continuous. Hence M is quasi-
injective (Mohamed and Miiller, 1990, Theorem 3.16). O

Note that a left self-injective (resp. right and left continuous) ring R such that
R/Soc(xR) is left Noetherian is QF (Ara and Park, 1991). But there exists a Noether-
ian projective self-injective module which is not Artinian (see Dung et al., 1994,
Example in p. 87). Hence in the above theorem it is not enough for M to be Artinian
to assume that M/Soc(M) is Noetherian.

Corollary 4.19. The following conditions are equivalent for a ring R.

(1) R is a QF-ring with J(R)* = 0.

(2) &R has (C2), R(R®R) is CS and R/Soc(xR) is semisimple Artinian.

(3) R is left Soc(xR)-semiregular, left Noetherian with left (C;) and R ® R is
left min-CS.
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Now we give the examples. First example shows that there is a projective module
M which is §(M)-semiregular but not semiregular hence not Soc(M)-semiregular
(see Nicholson, 1976, Example 2.15).

rF F
0 F

M=R={(x1,...,x,x,x,...):n € N, x; € Mh(F),x € I}.

Example 4.20. Let F be a field, I = [ } and

With component-wise operations, R is a ring.

0 F
O0(xgR) ={(x1...,x0,x,x,...) :n € N,x; € Mr(F),x € J} where J:{ }

0 0
Soc(xR) = {(x1,...,%,,0,0,...) :n € N, x; € Mr(F)}

Thus,
F F
R/Soc(zR) = {0 F}

and so R is not left Soc(zR)-semiregular. Also by Example 2.15 in Nicholson (1976)
R is not semiregular, but §(,R)-semiregular by Example 4.3 in Zhou (2000).

If M is finitely generated projective Z(M)-semiregular, then M need not be
Soc(M)-semiregular. Hence there is a module M which is semiregular but not
Soc(M)-semiregular (see also Yousif and Zhou, 2002, Example 1.8).

Example 4.21. Let M = R = Zg. Then R is a self-injective ring, J(R) = Z(R) = 2R
and Soc(R) =4R. Hence R is a Z(R)-semiregular ring by Nicholson and Yousif
(2001) but not Soc(R)-semiregular since J(R)-semiregular is not contained in
Soc(R).

If M is Soc(M)-semiregular then M need not be Z(M)-semiregular. The ring of
2 x 2 upper triangular matrices over a field is the example of such a module, see
Yousif and Zhou, 2002, Example 1.8).
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