Potential preventive effects of angiotensin-(1-7) on bone matrix quality in diabetic rats through modulation of the organic matrix


Dalaman U., Cuneyit I., Öztürk Ş., Karagur E. R., OCAK M., YARAŞ N., ...Daha Fazla

Joint Diseases and Related Surgery, cilt.36, sa.3, ss.577-588, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 36 Sayı: 3
  • Basım Tarihi: 2025
  • Doi Numarası: 10.52312/jdrs.2025.2181
  • Dergi Adı: Joint Diseases and Related Surgery
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.577-588
  • Anahtar Kelimeler: Angiotensin-(1-7), biomechanics, bone organic matrix, bone quality, diabetes mellitus, raman spectroscopy, renin-angiotensin system
  • Akdeniz Üniversitesi Adresli: Evet

Özet

Objectives: This experimental study aims to investigate the effects of angiotensin (1-7) (Ang-[1-7]) on the microstructural, biomechanical, and biophysicochemical properties of bone tissue in diabetic rats. Materials and methods: Forty-eight male Wistar rats, aged three months and weighing between 280 and 330 g, were used in this study. Four groups, each containing 12 rats, were established: Control, diabetes mellitus (DM), DM-Ang-(1-7), and Ang-(1-7). The samples underwent analysis through micro-computed tomography (CT), Raman spectroscopy, and three-point bending biomechanical test. Results: Diabetes significantly impaired bone quality, with reduced cortical thickness, maximum load, and flexural strength (p<0.05). The Ang-(1-7) treatment improved flexural strength (p<0.05), but did not fully restore mechanical function. Micro-CT showed decreased bone volume and trabecular thickness in both diabetic groups (p<0.05), with no significant recovery by Ang-(1-7). Raman spectroscopy revealed lower mineral-to-matrix ratio and disrupted collagen quality in diabetic bone (p<0.05), while Ang-(1-7) partially restored collagen-related parameters. Conclusion: These findings highlight that Ang-(1-7) has minimal impact on bone minerals in DM rats. However, it may have a potential preventive effect on the triple-helix structural impairment within the bone organic matrix in this model.