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Abstract. In this study, we give a new method for finding n-th roots of
a 2x 2 real matrix with the help of hybrid numbers. We define argument
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1. Introduction

A matrix B is said to be an n-th root of a matrix A if B®™ = A, where
n > 2. There are many studies in the literature giving different methods
of finding roots of a matrix. These methods mainly depend on the Shur
Theorem, the Cayley Hamilton Theorem or the Newton Method. Denman
described an algorithm for computing roots of a real matrix with the real
part of eigenvalues not zero in 1981 [5]. After that, Bjork and Hammarling
developed a method for calculating the square root of a matrix based upon
the Schur factorization method [2]. Higham described a generalization of the
Schur factorization method for the real square root of a n by n matrix in
1987 [6]. The n-th root of a matrix A may not exist. In this case, A is called
rootless matrix. Some of the known results related to the existence of a root
of a matrix are also as follows. If a matrix A is nonsingular and diagonalizable
then A always has a root. Yuttanan also examines roots of nilpotent matrices
n [19]. On the other hand, if an n x n matrix has at least n — 1 nonzero
eigenvalues, then this matrix has a square root.

In this study, we will not be interested in the roots of n x n matrices. We
will especially deal with the finding of the n-th roots of 2x2 matrices. Sullivan
described a method to calculate all square roots of a 2x2 matrix, using the
Cayley Hamilton theorem [17]. The Newton method used to find roots of a
2x2 matrix can be found in the Higham’s [7] and Lannazzo’s [9] papers. Some
of the basic methods to find square roots of a 2x2 matrix are summarized in
the Nortshield’s paper [13]. Moreover, some of the recent studies related to
the finding of the roots of 2x2 matrices are as follows [1], [3], [8], [10], [13],
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[14], [15], [16], [17]. In 2004, Choudhry was concerned with the determination
of an algebraic formula giving the nth roots of 2x2 matrices. If A is a 2x2
scalar matrix, the equation B™ = A has infinitely many solutions, if A is a
non-scalar 2x2 matrix, the equation B™ = A has a finite number of solutions
and Choudhry gives a formula expressing all solutions in terms of A [3].

In this study, we will provide a new algebraic method that is different
from the above methods. For this, we will take advantage of the concept
of the hybrid number defined in the previous article of Ozdemir [11]. With
the help of hybrid numbers, we will define a polar form of any real matrix
and give the De Moivre formula for 2x2 matrices to find the roots of a
matrix. The paper is organized in the following way: in section 2, we give the
definition of hybrid numbers and some important Theorems. Also, we classify
2x2 matrices by using hybrid numbers. For detailed information on hybrid
numbers see [11], [4]. In Section 3, we describe the polar representation of a
2x2 matrix. In section 4, de Moivre’s formulas for 2x2 matrices are proved
and methods of finding the roots of a 2x2 matrix are examined separately
according to its character and type.

2. Hybrid Numbers and Classification of 2x2 Matrices

Hybrid numbers are a new generalization of complex, hyperbolic and dual
numbers. It is a noncommutative ring. We can classify a Hybrid number
as elliptic, hyperbolic, or parabolic. On the other hand, a hybrid number
is classified as timelike, spacelike and lightlike according to its norm. As in
the complex numbers, we can find roots of a hybrid number, using the De
Moivre’s formula for hybrid numbers. There is an isomorphism between the
algebra of hybrid numbers and algebra of 2x2 real matrices. So, it can be
classified 2x2 matrices, with respect to kind of corresponding hybrid number.
Using this isomorphism, we will define De Moivre formula for 2x2 matrices
and find n—roots of a 2x2 matrix.

Definition 2.1. The set of hybrid numbers K, defined as
K= {a+bi—|—c€+dh ca,b,e,d € R, i’=—1, £2=0, h?=1, ih:—hi:s—H} .

For the hybrid number Z = a + bi + ce + dh, the number a is called the
scalar part and is denoted by S(Z). The part bi + ce + dh is also called the
vector part and is denoted by V(Z). Multiplication table of hybrid numbers
as follows.

1 € h
i | —1 1—h|e+1
e|lh+1 0 —e
h|—e—1i]|e 1

Multiplication operation in the hybrid numbers is associative and not com-
mutative. The conjugate of a hybrid number Z = a + bi + ce + dh, denoted
by Z, is defined as Z = S (Z) — V (Z) = a — bi — ce — dh as in quaternions.
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Definition 2.2. (Character of a Hybrid Number) Let Z = a + bi + c£ + dh be
a hybrid number. The real number
C(Z)=2Z=7Z=a*+(b—c) - —d? (2.1)

is called the characteristic number of Z. We say that a hybrid number;

Z is spacelike  if C (Z) < 0;

Z is timelike  if C(Z) > 0;

Z is lightlike  if C(Z) =0.
These are called the characters of the hybrid numbers.
Definition 2.3. (Type of a Hybrid Number) Let Z = a + bi + ce + dh be a
hybrid number. The real number

AZ)=—0b-c)P+P+d
is called the type number of Z. We say that a hybrid number;

Z is elliptic it A(Z) <0;

Z is hyperbolic if A(Z) > 0;

Z is parabolic  if A(Z) = 0.
These are called the types of the hybrid numbers. Also, the vector £z =
(b—¢,c,d) is called hybridian vector of Z.

THE CHARACTER
Spacelike Lightlike Timelike

Hyperbolic Hyperbolic | Hyperbolic

Parabolic Parabolic
Elliptic

mo=<-

Definition 2.4. (Norms of Hybrid Numbers) Let Z = a + bi + cc 4+ dh be a
hybrid number. The real number

12l| = V/IC(Z)] = wau - af

is called norm of Z. Besides, the real number

N(Z)M\/‘(bc)2+02+d2’

will be called the norm of the hybrid vector of Z.

Remark 2.5. This norm definition is a generalized norm definition that over-
laps with the definitions of norms in complex, hyperbolic and dual numbers.
Actually,

1.1If Z is a complex number (¢ = d = 0), then | Z|| = /|ZZ| = Va® + b2,
2. If Z is a hyperbolic number (b = ¢ = 0), then ||Z]| = /|a? — d?|,
3. If Z is a dual number (b= d = 0), then |Z|| = Va2 = |a .
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Using the hybridian product of hybrid numbers, one can show that the
equality C (Z1Zs) = C (Z1) C (Z2) . So, timelike hybrid numbers form a group
according to the multiplication operation. The inverse of the number of the
hybrid number Z = a + bi 4 ce + dh, ||Z|| # 0 is defined as

1 Z
_m.

Accordingly, lightlike hybrid numbers have no inverse.

Definition 2.6. Let Z = a + bi + ce + dh be a hybrid number. Argument of Z
is defined as follows with respect to its type.

Z
T — arctan M If Z is elliptic and a < 0,
a

Z

arctan M If Z is elliptic and a > 0,
a
argZ =6 = (2.2)

Z

In GH\/()‘ If Z is nonlightlike hyperbolic;
P
c

— If Z is parabolic.
1Z]]

Theorem 2.7. Let Z = a + bi + ce + dh be a hybrid number, and 0 = arg Z.
i. If Z is elliptic, then Z =p (cosf + Usin0) such that U? = —1;
i. If Z. a lightlike hyperbolic, then Z = a (1 + U) such that U? = 1,
1. If Z is spacelike or timelike hyperbolic, then, Z = kp (cosh 6 4+ U sinh 0)

such that U? = 1, where p = ||Z||, U :% and

1 Z is timelike and a > 0,
—1 7 is timelike and a < 0,

U Z is spacelike and a > 0,
—U Z is spacelike and a < 0,

forke{-1,1,U,-U}
. If Z is a parabolic hybrid number, then Z = ||Z|| (£ + U) where
U=YE U2=0,¢=sgn(S(2)).

Theorem 2.8. (Ozdemir 2018) Let Z = a + Ub, U? € {£1,0} be a spacelike
or timelike hybrid number. If 0 = argZ and p = ||Z]| .
i. If Z is elliptic, then Z" = p™ (cosn® + Usinnh), U? = —1;
ii. If Z is hyperbolic, then Z™ = k" p™ (coshnf + Usinhnf), U? = 1;
wi. If Z is parabolic, then Z™ = p™ (5” + n§”_1U) , U2 =0.

Theorem 2.9. (Ozdemir 2018)If Z = a (1 + U) is a lightlike hybrid number,

then Z™ = a™2"~1 (1 + U) where U = X/(é)) and U? = 1.

Let W € K and n € Z™, the hybrid numbers Z satisfying the equation
Z" =W is called the root of the n-th degree of the hybrid number W. Find-
ing the root of a hybrid number will vary depending on the type (parabolic,
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elliptic, hyperbolic) and character (timelike, spacelike, lightlike) of this hy-
brid number. The roots of a hybrid number can be given as follows in two
separate cases as in the split quaternions [12]. The first case is for spacelike
or timelike hybrid numbers, the second case is for lightlike hybrid numbers.

Theorem 2.10. (Ozdemir 2018) Let W be a hybrid number and n € Z*. The
hybrid numbers Z, satisfying the equation Z™ = W can be found as follows.

i. If W = p(cos8 + Usinb) is an elliptic hybrid number, then the roots
of W are in the form

0+ 2 0+2
7, — W(COSWWSmW)
n

form=0,1,2,....,n —1;
it. If W =pk (cosh 6 + U sinh 0) is a spacelike or timelike hyperbolic hy-
brid number, then the roots of W are in the form

0 0
/p (cosh — + Usinh ) If n is odd,
n n

0 0
kz/p (cosh -~ + Usinh n) If n is even, W is timelike and a > 0,

(2.3)

Z; =

No roots other cases

where k € {1,-1,U,-U};
wi. If W =p(E+U), £ =sgn(S(Z)) is a parabolic hybrid number, the

only root is
U
Z=p (1 + )
n

Theorem 2.11. (Ozdemir 2018) If W = a (1 + U) is a lightlike hybrid num-

ber, then
+4/2a
2
{2a
2

where p = ||Z]] .

(1+U) ifn is even

(1+U) ifnisodd

forn € Z+ where U = X/(é)) and U? = 1.

2.1. Classification of 2x2 Matrices Using Hybrid Numbers

Just as we classify a hybrid numbers, we can classify a 2x2 matrix. Any 2x2
matrix is classified as spacelike, timelike or lightlike and sorted as hyperbolic,
elliptic, or parabolic, taking into account the isomorphisms and relations
between hybrid numbers and 2x2 matrices.

Theorem 2.12. (Ozdemir 2018) The ring of hybrid numbers K is isomorphic
to the ring of real 2x 2 matrices Miyxo with the map ¢ : K — Moy where

a-+c b—c+d

p(a+bi+ce+dh) = c—bid a—c

(2.4)

forZ =a+bi+ ce +dh € K.
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The matrix ¢ (Z) € Mayo (R) is called the hybrid matrix corresponding
to the hybrid number Z. By defining this isomorphism between 2x2 matrices
and hybrid numbers, we can easily multiply the hybrid numbers and prove
many features of hybrid numbers more easily. Also, we have

LP_1|:CCL Z}:<a;d>+<a+b;c—d> i+(a;d) E+<b42rc) h (25)

Theorem 2.13. (Ozdemir 2018) Let A be a 2x 2 real matriz corresponding to
the hybrid number Z, then there are the following relations.

i. p = ||Z]| = /|det A,

ih. A(Z) = (22)° — det A,

iii. P(\) = A — (trA)A + det A, Aq = (trA)? —4ddet A = 4N (Z) is
discriminant of the characteristic polynomial of A.

iv. Z71 exists if and only if det (A) # 0.

As a conclusion of this Theorem, we had shown that the classification
of hybrid numbers depends entirely on the determinant and the trace of the
2x2 corresponding matrices. That is, we can classify a hybrid number Z,
with respect to the kind of the corresponding matrix ¢ (Z) = A. Besides, we
can classify 2x2 matrices, similar to hybrid numbers. Thus, we can give the
following classifications for 2x2 real matrices.

Definition 2.14. Let A be a 2x2 real matrix. Then,

Z is spacelike if det A < 0;
Z is timelike  if det A > 0; (2.6)
Z is lightlike  if det A = 0.

Definition 2.15. Let A be a 2x2 real matrix where A; and A\ are the eigen-
values of A. Then,

A is called elliptic if A1, A2 are complex numbers;
A is called hyperbolic if A1, A2 are real numbers;
A is called parabolic  if A\; = As.

Moreover, they can be defined as

A is elliptic if Ay <0
A is hyperbolic if Ay > 0; (2.7)
A is parabolic  if Ay =0.

where Ay = (trA)? — 4 det A.

Corollary 2.16. Norm of a 2x 2 real matriz, defined as follows :

p = ||A]| = V/|det A|, when A is spacelike or timelike matriz,
p = ||Al| =trA, when A is lightlike matriz.
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Classification 2x2 matrices can be given with the following table.

A det A >0 det A=0 det A <0
(trA)2<4detA | Timelike Elliptic 0 0
(trA)?=4detA | Timelike Parabolic | Null Parabolic | ()
(trA)2>4detA Timelike Hyperbolic | Null Hyperbolic | Spacelike Hyperbolic

Using these classifications and De Moivre formulas for hybrid numbers,
the roots of a 2x2 matrix can be found easily. Notice that the 2D rotation
matrices in the Euclidean, Lorentzian and Galilean plane,

cosf) —sinf cosh@ sinh6 0+1 -0
sinf  cos6 ’ sinh @ cosh@ 0 1-6

are elliptic, hyperbolic and, parabolic matrix, where these matrices corre-
spond to an elliptic, a hyperbolic and, a parabolic hybrid number, respec-
tively.

3. Polar Representations of 2x2 Matrices

In this section, we give the polar representations of 2x2 matrices with respect
to their type and character separately. These representations will depend on
whether the matrix is elliptic, hyperbolic, and parabolic. On the other hand,
according to whether the matrix is spacelike, timelike or lightlike, the polar
representation will change. For this reason, we will give the polar represen-
tation of a 2x2 matrix with three different subsections.

Definition 3.1. Let A = [ Z Z } is a real matrix. Argument of A defined as

follows :

i. If A is elliptic such that trA < 0, then arg A = § = m — arctan V‘trﬁl ;

ii. If A is elliptic such that trA > 0, then arg A = 6 = arctan V‘trﬁl"“‘,
trA + VAx
2p ’

iii. If A is hyperbolic, then arg A = 6 = In

a—d
la + d|

iv. If A is parabolic, then arg A = 6 =

where p = \/[det A], Ay = (trA)* — 4det A.

After that, throughout the paper, we will use the above formulas for the
argument of elliptic, hyperbolic and parabolic matrices.

3.1. Polar Representation of an Elliptic 2x2 Matrix

Theorem 3.2. If A = [ (Cl Z } is an elliptic matriz, then A can be written

in the polar form as

cos 0 + sm9 2b__ gin 6
A=p 2V v N (3.1)
msm cos ) — —A==sin
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Proof. If A is elliptic, then we have A < 0 and det A = ad — bc > 0. The
hybrid number ¢! (A) corresponding to the matrix A is

a+d at+b—c—d\. a—d b+c
w_( : )+(2 )+( . >€+( ! )h.

Therefore, according to Theorem 2.7, we can write W = p (cosf + Usin6),
where

U- N%((a+bfc—d)i+(afd)s+(b+c)h).
since p = vdet A and N (W) = v/—A. Thus, using the isomorphism (2.4),
we obtain (3.1). O

3.2. Polar Representation of a Hyperbolic 2x2 Matrix

a

Theorem 3.3. If A = is a hyperbolic real matriz, then A can be

b
d
written in the polar form as follows :
i. if A is timelike, then

. (a—d) 20

A—ép cosh 6 + NV sinh 0 Ny sinh 0 (32)

\/2ACT sinh 0 cosh 6 — (a\/}j‘) sinh 0 ’
1. if A is spacelike, then
. (a—d) 2b
A= sinh 6 + ﬁcoshﬁ mcosh& (3.3)
2c . a—d '

T cosh 6 sinh 6 — /Yy cosh 6

where & =sign(trA).

Proof. If A is hyperbolic, then we have A > 0. Let the hybrid number =1 (A4)
corresponding to A be W. The matrix A can be spacelike ,timelike or lightlike
according to sign of det A. So, from Theorem (2.7), we can write

W — £p(coshf + Usinhf), when W is timelike;
o p(sinhf 4+ Ucoshf), when W is spacelike;

where

V:ﬁ((a—i—b—c—d)i—i—(a—d)e+(b+c)h).

Scalar parts of these hybrid numbers depend on the
_ a+d trA
St (4) = =

2 2
On the other hand, scalar part of W is
S (W) = £pcoshb.

So, if trA > 0, namely ¢ =sign(trA) = 1, then we have to write pcosh6, on
the other case, we write —pcosh#@. Thus, using the isomorphism (2.4), we
obtain the equalities (3.2) and (3.3). O
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Theorem 3.4. If A = CCL b] is a lightlike hyperbolic matriz, then A can be

d
written in the polar form as

a b
A=tra| 4 4 ] : (3.4)
trd  trA

Proof. If the matrix A is lightlike, hyperbolic, then
det A =0 and (trA)? > 4det A = 0.

So, trA # 0 and the polar form of the hybrid number ¢! (A4) corresponding
to A can be written as

W =trA (5 + (“Be5) i+ (554) e + (555) b))

Therefore, using the isomorphism (2.5) we get the polar form of A as (3.4).
O

3.3. Polar Representations of a Parabolic 2x2 Matrix

Theorem 3.5. If A = LCZ is a timelike parabolic matriz such that a # d,

b
d
then A can be written in the polar form as

1+4¢6 £200
A:M a—d
2 2&cH
1—
a—d &0
where § = a—d and & = sign(trA)
" Jatd - '

Proof. The hybrid number corresponding to A is (2.5). If A is parabolic, then
we have (trA)? = 4det A. Therefore, we get

EtrA
W = /Jdet 4] = 2

where £ = sign (trA) . Thus, according to the Theorem (2.7), the polar form
of the W is

rA a+b—c— . a—
W= 4 (e (stfst )it (g55) <+ (455 b).

So, the argument of W is

0— (a—d)/2 a—d
O (&trA) /2 EtrAT

Therefore, we have trA = ae’gd and we can write

W= €4 (e (14 C90) i+ 0=+ (L5 )




10 Mustafa Ozdemir

Thus, using (2.4) and trA = a +d = %-¢, we obtain,

23
0+1 7%59
A=17 2c0 a—d
1-¢60

a—d

O

a

Theorem 3.6. If A = is a lightlike parabolic matriz, then det A =0

b
d
and trA = 0. So, A can be written as

2
a -= or 00
. —(Cz c 0|’

depending on whether ¢ # 0 or ¢ = 0, respectively. A parabolic lightlike matriz
s a nilpotent matriz. That is, A™ =0, for all n € N.

Proof. If A is a parabolic null matrix, then det A = 0 and trA = 0. It means
that @ +d = 0 and ad — bc = 0. So, d = —a, bc = —a®. If ¢ = 0, then
a=d=0. In the case ¢ # 0, we obtain b = —a?/c. (]

Theorem 3.7. If the matriz A = { (Cz Z } is a timelike parabolic matrix with

a=d. So, A can be written as

A:a[c}a (1)],/1:@“) b{a} orA:aH H (3.5)

according to whether b=0, c =0 or b = c = 0, respectively.

Proof. If A is parabolic, then (trA)2 = 4 det A. So, in the case a = d, we find
that a® = a? — be and be = 0. ([l

4. De Moivre’s Formula for 2x2 Matrices

In this section, using the polar forms, we can express De Moivre’s formulas for
the 2x2 matrices. Here, the De Moivre’s formulas also change with respect
to the types of the matrices.

4.1. De Moivre’s formula for Elliptic Matrices

Theorem 4.1. Let A = { CCZ Z } be an elliptic real matriz whose polar rep-

resentation is

a—d_ 26
A=y COSG—Fmblna mbm@
\/ECTASinﬁ cos@—\/%sinﬁ ’
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then A™ has the form

P [ cos(nf)+ sin(nd) m in (nf) ] 1)
P \/_7 nb) cos(nf) — \/%5111(119) ‘

forn € Z.

Proof. Tt can be proved by induction. It is true for n = 1. Assume that (4.1)
holds for n = k. Then, using Ay = a® — 2ad + d? + 4bc, we obtain A**! as

it cos(k—l—l)@—l—\/ism(kz—i—l)e %sm(k—i—l)@
P [ 2 sin(k+1)6 cos(k+1)0 — AL sin(k-+1)9
Moreover, since
= . [cosf — \/‘lemnH J%sm&
-7 l \/LAsmH Cos0+\/;sm9]
we have
p— [cos(n@) \/% sin(n#f) \/_% sin (nf) ]
7= sin (nf) cos(nd) + \/%sm(ne)

So, the formula holds for all integers. O
Corollary 4.2. If A = [ CCL 2 } is an elliptic real matriz, then A™ is also an

elliptic matriz.

Proof. A™ is an elliptic matrix if and only if (trA™)* < 4det A™. So, using
(4.1), we obtain trA™ = 2p" cos?nf and det A" = p?". Therefore, we have
trA™ = 4 (cos? nf) det A" and (trA™)? < 4det A™, since 0 < cos?6 < 1. [

4.2. De Moivre’s formula for Hyperbolic Matrices

Theorem 4.3. If A = [ Ccl Z is a timelike hyperbolic real matriz whose
polar representation is (3.2), then

. cosh(nf) + (a\/ﬂ sinh(nd) \/QAL sinh(nf) (42)
= p .
\/2ch sinh(nd) cosh(nf) — (a\/rd) sinh(nd)

for n € Z, where £ =sign(trA).

Proof. Tt can be proved by induction similar to proof of Theorem 4.1 and

using the equality Ay = a® — 2ad + d? + 4bc. O
Theorem 4.4. Let A = { (2 Z } be a spacelike hyperbolic real matriz whose

polar representation is (3.3).
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i. If n is an even integer, then A" is a timelike matriz and

cosh(nf) +-4=L sinh(nf) —2b_ ginh(nf)
An=¢n Vs Vs (4.3)
\/QALA sinh(nf) cosh(nf) — \’}% sinh(nf)
1. If n is an odd integer, then A™ is a spacelike matriz and
sinh(nf) +-4=L cosh(nf) —2_ cosh(nb)
An=gnp b 0 A (4.4)
e cosh(n#) sinh(nf) — T cosh(nf)

trA+vAa
24/|det A|

Proof. Hybrid product of two spacelike hybrid numbers is a timelike hybrid
number. So, if A is a spacelike matrix and n is an even number, A™ will be
a timelike matrix. Also, if n is an odd number, then A™ will be a spacelike
matrix. Let polar form of the spacelike hyperbolic matrix A be

where E=sign(trA), p=+/|det A|, 6=In and Ay =(trA)?> — 4 det A.

6 l sinh 6 + % cosh 6 \/% cosh 6 ]
2c . a—d :
Ny cosh 0 sinh 6 — Yy cosh @
Then, using the equality Ay = a® — 2ad + d? + 4bc, we obtain
2 -, [cosh(%)—i— &% sinh(26) \/% sinh(20) ]
2c  : . a—d _: ’
T sinh(26) cosh(20) — a. sinh(26)
. 5 sinh 360 + “Zi cosh 360 % cosh 360
A° = .
& \/QA% cosh 36 sinh 36 — \‘;% cosh 36

Therefore, it can be proved by induction. Let & is an even number and (4.3)
is true for n = k. Then, k + 1 is odd. So, we get A*+1 as,

i sinh(k+1)6+ \‘}% cosh(k +1)0 \/Z—ALA cosh(k+1)0
A& cosh(k+1)0 sinh(k+1)0 — =L cosh(k+1) |
Similarly, if k£ is an odd number, k + 1 is even and A¥*+1 is
r cosh(k+1)6+ (\‘;;—‘i) sinh(k+1)6 \/QALA sinh(k+1)6
2 sinh(k+1)6 cosh(k+1)0 — =2 sinh(k+1)6

O

Theorem 4.5. If A = Z Z } is a spacelike hyperbolic real matrixz such that
trA =0, then A™ is
p" YA when n is odd;
A" = . (4.5)
p"I  when n is even.

where A™ is a parabolic matrix.
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Proof. Let A be a spacelike hyperbolic matrix such that trA = 0, then we
have p =+v/—det A and A4 = —4det A > 0. So, we get

trA+VAL | ‘ 2y— detA‘ —Inl=0
24/ |det A| 2v/—det A '

Thus, according to (4.3) and (4.4), we obtain

e[} taweros 4]

f =1In

—a
for n is even or odd, respectively. ([

Corollary 4.6. Let A be a 2 X 2 spacelike hyperbolic matriz such that trA = 0.
A" is a parabolic matrixz if and only if n is an even number.

Proof. A™ is a parabolic matrix if and only if A= = 0. According to (4.5),
Aan = —4p>"=Ddet A for n is odd number and A n = 0 for n is even
number. We know that det A < 0 for a spacelike matrix, then det A # 0 and
A an # 0 for n is odd. So, A™ is a parabolic matrix if and only if n is an even
number. O

Corollary 4.7. Let A be a 2 x 2 lightlike parabolic matriz such that trA = 0.
A" is a parabolic matriz if and only if n is an even number.
Theorem 4.8. Let A = [ Z Z ] be a lightlike hyperbolic real matrix whose

polar representation is

_a_ b
_ trA  trA
A=trA e 4 ] .
trA trA
Then, we have
_a_ _b_
A" — (tI“A)" trcA trdA ] ) (46)
trA trA

forn € ZT.

Proof. We know that trA # 0 for a lightlike hyperbolic matrix A. Let’s prove
it by induction. Assume that (4.6) is true for n = k. Then,

_a_ b 2
trA trA

AR = (trA)"

¢ _d_
trA trA

On the other hand, we know that det A = 0, so, ad = bc for the lightlike
matrix A. If we use this equality, we get

way [ a?+be bla+d)
(tra)? | cla+d) d*>+be

a b
k+1 _ (trA)" atrA  btrA o n+1 trA  trAd
AT = (trA)? [ ctrA dtrA | (tr4) - tdA '

O

Corollary 4.9. If A is a lightlike hyperbolic matriz, then A™ is also a lightlike
hyperbolic matriz.
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Proof. If A is a lightlike hyperbolic matrix, then det A = 0 and trA # 0. So,
using (4.6), we obtain det A™ = 0. That is, A™ is also a lightlike hyperbolic
matrix. U

d
then A™ is also an hyperbolic matrix.

Proof. A™ is hyperbolic if and only if (tr (A”))2 > 4det A™. If A is hyperbolic,
A™ can be one of the equalities (4.2), (4.3), (4.4) and, (4.6). If A™ is (4.2) or
(4.3), we obtain

tr (A™) = 26" p" coshnf and det A™ = p°".
Therefore, we have (tr (A™))? = 4 cosh? nf det A™. If A™ is (4.4), we have
tr (A™) = 26" p" sinhnf and det A" = —p*".
and (tr (A™))* = —4sinh® nf (det A™). Finally, if A™ is in the form (4.6), then
tr (A") = (trA)™ and det A™ = 0.

Thus, we see that the inequality (trA)? > 4det A™ is true for all cases of A",
if trA # 0. O

Corollary 4.10. I[f A = [ Z b } 18 a hyperbolic real matriz such that trA # 0,

4.3. De Moivre’s formula for Parabolic Matrices

Theorem 4.11. If A = [ CCL b

d } , a # d is a timelike parabolic matriz whose

polar representation is

&0+ 1 26660
A= trd a—d
2 2c£6 ’
1-&60
a—d ¢
then —
n trA -
A" = ( 2 ) 2cn§9 (4~7)
1—¢&nb
a—d
for n € Z where 6 = ﬁ;g‘ and & =sign(trA).
Proof. Assume that (4.7) is true for n = k. Then, we get
2€0 2EkO
0+1 —— kKH+1 ———
=) G ] g
0 1 _¢p RO ek
a—d —d

On the other hand, in a parabolic timelike matrix, we know that the equality
(trA)* = 4det A # 0 satisfies. So, we have (a — d)* = —4be and we obtain

2¢ (k+1)6
JRRS 1+ (k+1)6¢ 4C(l_d)
2 2c€ (k+1)6 1= (h+1)0¢

a—d
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O

Theorem 4.12. If A = [

then A™ is
n 1 0 nl 1 mb/a
@ nefa 1|’ “lo 1

10
0Ta|:01

with respect to whether b =0, c =0 or b = c = 0, respectively.

CCZ Z } is a timelike parabolic matrix with a = d,

Proof. If A is parabolic, then (trA)* = 4det A. So, in the case a = d, we find
that a® = a® — bc and be = 0. Thus, it is clear from the Theorem 3.7. (|

a

Corollary 4.13. If A = is a timelike parabolic matriz, then A™ is

b
d
also a timelike parabolic matriz.
Proof. We know that, A is a timelike parabolic matrix if and only if
(trA)® = 4det A # 0.
Therefore, we obtain
det A™ = (%)Qn and trA™ =2 (%)n

using (4.7), Thus, we see that the equality (trA™) = 4det A™ satisfies. Tt

means that A" is also a timelike parabolic matrix. O
Theorem 4.14. If A = [ i d } s a lightlike parabolic real matriz, then
A" =0
foralln € ZT.
Proof. See Theorem (3.6). O

5. Roots of a 2x2 Matrix

In this section we study n-th roots of a 2 by 2 real matrix, considering the
De Moivre’s formulas given above.
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5.1. n-th Roots of an Elliptic Matrix

Theorem 5.1. Let A = [ i 2 } be an elliptic real matriz whose polar rep-

resentation is
(a—d)

2b
e (3089—1—\/751119 msm@
P 2¢__ sin 6 cosh — =D ing |’
V—1~Aa V—"2~2a
then the n-th roots of the matriz A are
0+27rk (a— d) n 0+27k 2b 9+27rk
'/ coSs + = P Wavyy sin (5 1)
P 2 gin 9+27rk oS 0+27rk (a=d) ., O+2rk ’
vV—Aa 7AA n

where k =0,1,2,...,n— 1.

Proof. Let the matrix X be an n-th root of A. Then we have X" = A.
Considering the Theorem (4.1) and the fact that positive integer power of an
elliptic matrix is an elliptic matrix, X is in the form

(a—d) 2
X cosﬁ—l—msmﬁ msmﬂ
\/ECTAsinﬂ cosﬂf%sinﬁ
So, we have
X cosnf + \/ai) sinnf \/% sinnp
! \/27% sinn3 cosnf3 — \/‘i sinn3
Therefore, from the equality X™ = A and equality of matrices, we obtain,
Bzwandpx:{L/ﬁfork:07172,...,n—1. O
) - . 1 2
Example 1. Let’s find n-th roots of the elliptic matrix A = [ 11 ] . The
polar form of A is
cosf V2sin 6
A=V3| 5
———sinf  cosf
2
where 6 = arctan /2. According to Theorem (5.1), we obtain
0+ 27k 0+ 27k
cos +en v2sin +en
YA =3/
V2 . 0+2rk 0 + 21k
_7 1mn n COS n
where k = 0,1,2,...,n — 1. For instances, third roots of A are
0+2mk \/? . 0+27k
cos = sin TR
3 __ql/6 3 _
VA=3 . giamk pione | for k=012

2 sin COS

3 3



Hybrid Numbers and Roots of Matrices 17

So, the roots V/A are
(arctan \/5) . (arctan \/5)
A, = 310 s V2sin——

3 3
[ 1.1406  0.53174 ]

_§ sin (arctan \/5) oS (arctan \/5)

—0.26587 1.1406

A 31/6 COoS 27r+ar(§tan \/5 \/é sin 27r+ar(étan V2
2 B ﬁ i 2mtarctan \/§ 2mw+arctan \@
—T5 ST COS -3

—0.8959 1.131
—0.56551 —0.8959 |-

and

V2

—~5 Sin

COoS 4m+arctan \/5 \/5 sin 4m+arctan \/5
31/6 3 3

4m+arctan \/ﬁ 4 +arctan \/5
-3 COS -3

—0.24466 —1.6628
0.83138 —0.24466 |-

Corollary 5.2. If A is an elliptic matriz, then there are n matrices X satis-
fying the equality X™ = A. So, an elliptic matriz has 2 square roots.

5.2. n-th Roots of a Hyperbolic Matrix

a b

Theorem 5.3. Let A = [ e d ] be a timelike hyperbolic real matriz whose

polar representation is

cosh 6 + (a\/%i) sinh 6 \/2;7 sinh 6
A=E&ap
2c . (a—d) .
T sinh 0 cosh 6 — /Y sinh 0
i. If n is even number and &4 = 1, then n-th roots of A are
0, a4 2
cosh — + sinh — sinh —
VA VN
VA =+p/m n B n B n (5.2)
2¢_ ginh g cosh g B i) Y
VAa n n VAa n
and
R ) 2 0
sinh — + cosh — —=2 cosh —
VA VA
VA =+p/m n N n B n (5.3)
2¢_ cosh 4 sinh L) cosh 4
VA n n VAa n
1. If n is odd number, then n-th roots of A are
0
cosh — + (=4 ginp ~ 2b_ ginh —
VA VA
VA =gaptm " U M (5.4)
2¢_ ginh — cosh — — (=D giny 7

VA4 n n  Vha



18 Mustafa Ozdemir

Proof. Let the matrix X be an n-th root of A. Then we have X" = A. X
can be one of the forms (3.2), (3.3) or (3.4). If X in the form (3.2), that is
X is a timelike hyperbolic matrix, we can write as

cosh 8 + % sinh 3 2 sinh 8
\/QAC—A sinh cosh g — \‘;i sinh 8

So, considering the Theorem (4.3), we have

cosh(nB)+ (a\/g sinh(ng) \/% sinh(ng)
Xn npn
o \/2ch sinh(ng) cosh(np) — L\/g sinh(ng)

Therefore, from the equality X™ = A and equality of matrices, we obtain,

B n and Ea: pa: gp

If n is even, then we have p} = {p and it has a solution if and only if £ = 1.
If n is odd number, then {x = & and p, = /p.
If X in the form (3.3), then X is in the form

sinh 8 + F ) cosh 153 \/Q—L cosh 8
X =&xpx (amd)
\/H cosh 8 sinh g — T cosh 8
So, if n is odd, we have no solution for X™ = A, since
sinh(nj3)+ (;i) cosh(n3) \/% cosh(ng)
=& _
\/QA% cosh(np) sinh(nfB) — (a\/fi) cosh(np)
If n is even number, then
cosh(nfB)+ ‘I%d) sinh(n_3) Slnh( B)
X" =py ) (a—d)
T sinh(nf) cosh(nﬁ) v/ vy sinh(ng)

Thus, we have another solution where § = = and pit = Ep for £ = 1. At last,
we can see that there is no solution, if X is in the form (3.4). O

Now, let’s give two examples for n is odd or even.

Ezample 2. Let’s find V/A for the matrix

-13 21
A‘[ 14 22 }

A is a timelike hyperbolic matrix, since Ay = 92—32 =49 and det A = 8 > 0.
Then, the polar form of A is

cosh @ — 5sinh 0 —6sinh 6
A_\/g[ 4sinh cosh @ + 5sinh 6 }
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where 6 = In2y/2. Using the Theorem (5.3) for odd number n, we find v/A
as

In Q\f In Q\f o : In 22
i g1/6 cosh — 5sinh 6 sinh B
4 sinh h‘%[ cosh % + 5sinh %
-1 -3
2 4 |-
Ezample 3. Let’s find v/A for the matrix

11 10
i)

A is a timelike hyperbolic matrix, since Ay = (17)2 — 64 =225 and det A =
16 > 0. Then, the polar form of A is

1 4
cosh @ + — sinh 0 —sinh 6
A=4 9 3 3 1
3 sinh 6 cosh 6 — 3 sinh 6

where 6 = In4. Therefore, since n = 4 and £4 = 1, there are four roots v/A,
and these are,

1 4
cosh 184 4 = ginh Ind — sinh o4
n/ _ 4 4 3 4 4
A - :I:\/ZI : In4 In4 1 . In4
§Sth COShT—§SIDhT
115 2
ha = s1]32].
1 4
sinh ln4+fcoshM — cosh 1n4
gcosh% sinh%—gcosh%

N
w
~

I

1 2
P [ L2 } |
Theorem 5.4. Let A = [ (2 Z } be a spacelike hyperbolic matrix whose polar

representation is,

N sinh 6 + % cosh 0 \/2AL cosh 6
=p
\/QACT cosh 6 sinh \/7 cosh 6
i. If n is odd number, then /A is
sinh £ 4 (=9 cosh = 0 2b_ cosh Q
VA = pl/m noVAa VAaa 5.5
va g \/2ch cosh% sinh = 0 (\(;Td) cosh = 0 (5:5)

1. If n is even number, then there is no n-th root of A.



20 Mustafa Ozdemir

Proof. It can be proved similar to Theorem (5.3). O

—-13 5
-5 2
hyperbolic matrix, since A4 = (—11)2 +4 =125 and det A = -1 < 0.

Ezample 4. Let’s find v/A for the matrix A = [ ] . A is a spacelike

A:

sinh @ — 3Y3 cosh @ % cosh 6
- % cosh 0 sinh 6 + 3?‘/5 cosh 0

where 6 = In (MT*H) . So, the only 5th root of A is

/A sinh Q 3‘[ cosh o QI cosh u
N Qf cosh £ 0 sinh g + B‘f cosh g

-2 1
-1 1
Ezample 5. There is no any root v/ A for the spacelike hyperbolic matrix
-5 2
=74
since a spacelike hyperbolic matrix has not an n-th root if n is even.

Theorem 5.5. Let A = [ Z Z ] be a lightlike hyperbolic real matrixz whose

polar representation s

a_ b

_ trA  trA
A=1trA . 4 .

trA trA

Then, the n-th root of the matriz A is

a b
n n I ﬁ
VA= (et m4 ut ]
trA trA
forn € ZT.
Proof. Tt can be seen from Theorem 4.8 and Corollary 4.9. 0

Remark 5.6. In the case n is even, n-th roots of A exist if and only if trA > 0.

5.3. n-th Roots of a Parabolic Matrix

a b

Theorem 5.7. Let A = [ e d } , a # d be a timelike parabolic real matrix

whose polar representation is

_ A
A_ 2

@+1 22 1

e 1-g
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then the n-th roots of the matriz A are

0¢ 1 200 _¢

n r 1/n n§ + n(a—d)

VA= (%) s ) (5.6)
n(afd)g L— 55

where 0§ = and & =sign(trA).

=
Proof. Let X be a matrix satisfying the equality X™ = A. Because of that

A is a timelike parabolic matrix, X must be a parabolic matrix according to
Corollary (4.13). Then, the matrix X can be in the form

2y¢B

X:|:m y:|:trX £ﬂ+1 r—t ‘|
5 .

2 1 21

where trX =z +1¢, f = Ifl and (z —t)° = —4yz. According to (4.7), we
have

é‘nﬂ + 1 2yénp

r—t
2z¢np
Tt 1-enp
Thus, using the equations (X™);; = A1 and (X"),, = A, we find

(%59)" €nB+1) = HR(0+1)
()" (1—¢np) = BA(1-¢0).
Solving these two equations, we obtain tr2X = (trA)l/n nd 5 = 9. Therefore,
we have syeo
Y
X" = (A o+1 %5
2 22£0 :
et 1-¢0
Also, we can see that the equality X™ = A satisfies if and only if
b z a—d
% = a—d and a—t 7d and \z+t| = nla+d| "’

According to this, we can obtain y = bk, z = ck, © = (GTM)l/n + (%d) k
1

and t = (‘%d)l/n — (%54) k where k=1 (a—;d)%n . As a result, we find

n

N g
- (T) 2c€0 0
n(a—d) n

O
Remark 5.8. In the case n is even, n-th roots of A exist if and only if trA > 0.

Ezxample 6. Let’s find n-th roots of the parabolic matrix
11 —12
A= { 1o } .
The polar form of the matrix A is

A:5[1+9 —20 ]

0/2 1-0
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where 6 = g Therefore, we get

{1/2251/”[1;/207{;1 1_299//7;].

Theorem 5.9. If A = [CCL Z} be a timelike parabolic real matriz with a =
d#0, then VA is

1 0 1/n 1 b/an 1/n 1 0
{c/anl}’a [0 1 ora 0 1

according to b =0, ¢c = 0 or b = ¢ = 0, respectively. Moreover, if n is even
and b=c¢ =0, then VA is
t s
]
S
fort,s € R, s#0.

Proof. If A is a timelike parabolic matrix, then bc = 0. A can be one of the
forms (3.5). So, according to Theorem 4.12, we find /A as

1 0 1 b/an 10
1/n 1/n 1/n
@ [c/an 1},a {0 1 }ora {O 1}

for b =0, c = 0or b =c = 0, respectively. Moreover, from the Theorem

10 } . Assume that X = A

4.5, we can find different roots for A = a { 01

satisfies, where X = [ j y

} . According to the equality

X":(—detX)"/2[(1) (1):|:a|:(1) ?]:A,

we find a = (— det X)n/2 and a?/™ = x? + yz. Therefore, for x =t and y = s,

2/n _ t2
we obtain z = —— . As a result,
s
t s
a2/n _ t2
-
S

is a n-th root of A for t,s € R, s # 0 and n is even. That is, in the case
b= c=0 and n is even, we have infinitely many n-th roots for A. O

Ezample 7. Let’s find v/A for the parabolic matrix
8 0
A= [ 50 } |
According to Theorem 5.9, we get

VA=

t s
—1(t2—2) —t ]

S
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for s,t € R.
SOME CONCLUSIONS

1. Number of n-th roots of a 2x2 real matrix

As it can be seen from the above theorems, a 2x2 real matrix may have
one, two, four, n or infinitely many n-th roots, or it may have not a root. We
can summarize all results with the following corollary.

Corollary 5.10. A matriz B is said to be an n-th root of a matriz A if B = A,

a b

where n > 2. If A = L d} , then the number of n-th roots of a A is as

follows :

An elliptic matriz has exactly n n-th roots.

A timelike hyperbolic matrix has exactly four n-th roots if n is even.

A timelike hyperbolic matriz has only one n-th root if n is odd.

A spacelike hyperbolic matriz has not an n-th root if n is even.

A spacelike hyperbolic matriz has only one n-th root if n is odd.

A lightlike hyperbolic matriz has only one n-th root if n is odd.

A lightlike hyperbolic matrix has two n-th roots if n is even and trA > 0.
A timelike parabolic matriz has only one n-th root if a # d and trA > 0.
A nonzero lightlike parabolic matriz has not an n-th root.

A non-scalar timelike parabolic matrix has only one n-th root if a = d.
A scalar matriz has infinitely many n-th roots.

Each lightlike parabolic matrix is a root of zero matriz.

2. De Moivre’s Formula for 2D Rotation Matrices
The polar representations of the matrices

Roe cosf) —sind | cosh® sinh6 Ree 0+1 -0
7 sin®  cosf |7 5T [sinh6® coshf]’ YT | 6 1-0

are themselves, since Ag = —sin?6, Ay, = sinh? 6, where Rp, R and, Rg
are rotations matrices in the Euclidean, Lorentzian and Galilean plane, re-
spectively. So, de Moivre’s formula for these matrices as follows :
n_|cosnf —sinnd » | coshn@ sinhnf R nd+1 —nb
sinnd cosnf |’ sinhnf coshnf |’ "¢ | nb 1—né|"

E— L=
for n € Z.

3. Comparing some methods for finding n-th degree roots of a 2x2
matrix.

Let’s compare the practicability, the advantages and disadvantages of
the methods used in the literature. And we explain why the method given in
this study can be preferred to other methods.

e Basic Algebraic Method : Solving the system of higher degree equations
can be difficult and messy.

e Diagonalization : It is a commonly used method. But, it works only for
diagonalizable matrices.
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Schur Decomposition Method : It is works only for triangularizable
matrices. A disadvantage of this method is that if A has nonreal eigen-
values, the method necessitates complex arithmetic if the root which is
computed should be real.

Cayley Hamilton Method : Even if it is the best method for finding
square roots, it is difficult to apply for finding the roots of degree
greater than 2. For higher degrees, the computations can become long
and messy.

Newton Method : It does not give results in rootless matrices. It is long
and tedious for n > 2. If it is not known that matrix has not a root, it
will be a complete waste of time.

Using Complex, dual and hyperbolic numbers : It can only be used for
some three specific matrix types.

Abel-Mobius Method : It is the most difficult, tedious and complicated
one in the methods.

De Moivre’s Formula (Hybrid Numbers) : This method can be used
for all 2 x 2 matrices. It is suitable for the computer algorithm, and
after type and character of the matrix is determined, the result can be
directly calculated by substituting the n and 6 values in the appropriate
formula. No complicated function and process information is required.
The basic matrix, trigonometry and hyperbolic function knowledge is
sufficient to obtain the result. In addition to all of these, if the number
n is greater than 2, operations are not confused and difficult. That is,
in the case n > 2, it is an easy and fast alternative method that can
be used to find n-th root of any 2 x 2 matrix. But, this method can be
used only to find the real roots of a matrix.

Acknowledgment 1. This work was supported by Research Fund of the Akd-
eniz University. Project ID : 3897.
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De MOIVRE’S FORMULAS FOR 2 x2 REAL MATRICES

25

a b 2
A= eM R p = Jldetd|, Ay = (tr4)” — 4detA. € =sign(trA)
L d} B | |

trd + JA4
= In|—¥—2
2p

I

(trd)? > 4det 4

Hyperbolic Matrix

\

trd + JA,
2p

"

| det A=0 | | det 4> 0 |
\

| Spacelike Matrix I L

| Timelike Matrix I

‘ (trd)* = 4det 4 ‘

‘ (trd)? < 4det A ‘

A

y

| Parabolic Matrix |

| Eliptic Matrix

det4A>0

| detA=0 | | det 4> 0

v
\ Timelike Matrix

Lightlike Matrix Lightlike Matrix Timelike Matrix
a b l \a + d |
A4 w4 00
(tr A)n ) |: - } a+d
c
A w4 ‘
v end + 1 2bneb.
(=) ad
cosh(n0) + % sinh(n0) % sinh(n0) ? 2;%? 1—end
e
g 2¢_ sinh(n0) cosh(n0) — =2 sinh(ng)
VAL ; B
v
Ifn is even
cosh(n9)+ smh(nG) % sinh(n6)
enpr
g .
= sinh(n6) cosh(nf) — % sinh(n6) , 7% — atckan «/‘3 ted < 0,
Ifnis odd _ arctan g trd > 0,
sinh(n6)+ E cosh(n6) % cosh(n0)
enpr
2 a—d
e cosh(n0) sinh(n6) — cosh(n@)
v
cos(nf)+—=L /_ sin(n0) 2Fisin(na)
=0

{

pn—lA

when n is odd;

p"I  when n is even.
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Ezxample 8. Let’s find n-th power of each of the following different types of

matrices,
3 4 -2 3 3 2
S B B e R R
6 3 5 9 2 -1
o-[i3] =[5 4] e[ 3]

A is an elliptic matrix and polar form is

B cos(f) + sin(0) 2sin (6)
A=\5 [ sin (6) cos(#) — Sin(e)}

where 6 = arctan 2. Then, using the Theorem 4.1, we find that
A — V5" [cos(n@) + sin(nd) 2sin (nf) }

sin (n#) cos(nf) — sin(nd)
B is a timelike hyperbolic matrix, then using the Theorem 4.3, we get
coshnf + L sinhnd 3 sinh nf
B" = (=1)" 52 det Ll o
5 sinh nf coshnf — 35 sinhnf

where 0 = In %

C is a spacelike hyperbolic matrix, then then using the Theorem 4.3,
we find

sinh n@ + % cosh né 25—‘/5 cosh né
% cosh nfd sinh nf — % cosh nfd

where § = In(v/5 + 2).
D is a lightlike hyperbolic matrix and the polar form is

D:8{3/4 3/8]

1/2 1/4
So, we get
n_gn| 3/4 3/8
pr=8 {1/2 1/4]
FE is a parabolic matrix and polar form is
. 1+46 36
E_Q{ oy 1—0]
then, E" is
n_on| 1+n8  3nd +
E" =2 [ —nf/3 1—nb ] forneZ
where 6 = 3/2. Finally, F is a lightlike parabolic matrix. Then,
F"=0

for alln € Z*.
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