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Introduction

Introduction

% A matrix B is said to be an n-th root of a matrix A if B” = A.

% There are many studies in the literature giving different methods of
finding roots of a matrix. These methods mainly depend on the Shur
Theorem, the Cayley Hamilton Theorem or the Newton Method.

% Denman described an algorithm for computing roots of a real matrix
with the real part of eigenvalues not zero [Denman 1981].

% Bjork and Hammarling developed a method for calculating the square
root of a matrix based upon the Schur factorization method [Bjérk 1983].
% Higham described a generalization of the Schur factorization method
for the real square root of a n by n matrix [Higham 1987].

% The n-th root of a matrix A may not exist. In this case, A is called
rootless matrix. If a matrix A is nonsingular and diagonalizable then A
always has a root. If an n X n matrix has at least n — 1 nonzero
eigenvalues, then this matrix has a square root.

% For roots of nilpotent matrices see [Yuttanan 2005].

% Some of the recent studies related to the finding of the roots of
2x2 matrices are as follows [Andrescu 2014], [Choudry 2004],

[Jadhav 2017], [Mackinnon 1989], [Northshield 2010], [Sadeghi 2011],
[Sambasiva 2013], [Scott 1990], [Sullivan 1993], [Choudry 2004].



Some Known Methods n-th Roots of a 2x2 Matrix

Some of the basic methods to find n-th roots of a 2x2 matrix as follows :
Basic Algebraic Method
Diagonalization
Cayley Hamilton Method
Schur Decompositon Method
Abel-Mobius Method
Newton Method
Using Dual, Hyperbolic and Complex Numbers
The first sixt methods to find square roots of a 2X2 matrix are
summarized in the Nortshield's paper [Northshield 2010].
% First, we will give briefly about how these methods are used.
% After, we will define a new numbers system called Hybrid numbers,
and we will give a different method using these numbers. (De Moivre's
formula).
8. Using De Moivre’s Formula for 2x2 Matrices

Nogkwpb =
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Basic Algebraic Method

This method is based on the solution of four nonlinear equations. In this
method, we assume that

is a square root of A = [ i Z } ,a, b, c,d € R. In this case, we obtain

the nonlinear system of equation. For example. fifth roots of A can be
found solving the system of equation

t3yz + 2t°xyz + 3tx’yz + 2ty?z° + x° + 4x yz+3xy2z2 =

(t4 + t3X+ t2x?% 4 3t%yz + tx3 +4txyz—|—x +3x? yz+y z )
(t4+t3x+t2X2+3t2yz+tx + 4txyz + x* +3X yz+y z 2
5+ 4t3yz + 3t2xyz + 2tx%yz + 3ty? 2% + x3yz + 2xy?z

But solving this equation is not always easy.
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Special Cases (n-th Roots of Diagonal and Triangular

Matrices)

The number of solutions depends on whether n is odd or even.

Formiil

IfFA= [ g 2 ] and a # d, then we obtain

A-+| T 5

Formiil

If A= [ 8 Z} and a = d # 0, then we obtain

v

\"/Z::l: \/5 nv/ gn—1
0 Va

\
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n-th Roots of a Triangular Matrix

The number of solutions depends on whether n is odd or even.

Teeorem

IfA= [ g Z ] is a real triangular matrix, we get

"z —el/d
+| Va W nis even and a,d € Rt
n 0 evd
M T ()
\/EW n is odd
0 Vd

where € = £1. In this case, we have four square roots.
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. 64 665
Sixth roots of A = [ 0 729 } are
6 (\6/64 - \6/729) 665 )
/2 _ 4 _
VA= | Ve (64 — 729) —i[o 3}
0 /729
and
/64 + \6/729> 665
6 . g 4 ( . 2 —5
0 — /729
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Diagonalization Method

The well-known procedure for computing the square roots of a 2 x 2
matrix A is to diagonalize A. This method can be used for a
diagonalizable matrix.

% We know that a square matrix A is called diagonalizable if it is
similar to a diagonal matrix. To diagonalize a real matrix is we
need to find an invertible matrix P such that P~1AP is a diagonal
matrix. P is the matrix constituting of eigenvectors and

PlAP=D

is the matrix of by writing eigenvalues to principal diagonal
respectively.

% In this method, even if eigenvalues are complex, A may has real square
roots.
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Teeorem

Let A be a 2 x 2 matrix such that P~1AP = D. We know that

Ay = (tr A)2 — 4det A is the discriminant of the characteristic equation
of A. If DY/" is a nth root of D, then =PDY/"P~1 are the nth root of A
where P and D are

P_{a—d—\/AA a—d—l—\/AA]
a 2c

2c

and

D*E trA— A 0
=32 0 trA+ B4 |

We have

(£PD/7P1)" = (£PDV/"P 1) .. (£PDYV"P1) = PDP = A

It means that, PD1/"P~1 is a square root of A. ]
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e i . .. | 25 26 .
Let's find third roots of the matrix A = [ 39 38 ] using

diagonalization. We can find

1 1

[ -78 52 [64 o0 1| TT30 195
P‘{m 78]'0_[0 —1}3”‘“3 _l 1 1]

130 130

where P~1AP = D. Thus, we obtain,
VA= ppY3p-1
1 1
l—m Hé/ 1 o0 H78 52]

19 -
% 0 /64 78 78

o

1

(=)
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Cayley-Hamilton Method

The Cayley-Hamilton method is one of the most useful method to
find square roots of a matrix. See [Sullivan 1993] for how the
Cayley-Hamilton theorem may be used to calculate for all the square
roots of 2x2 matrices. Cayley-Hamilton Theorem for a 2 x 2 matrix
can be stated as A’ — (tr A) A+ (det A) | = 0. The following formula
is one of the most useful method to find square roots of a matrix.

Teeorem

Let A be a 2x2 real matrix such that (tr A)® # 4det A, then

A det A)/2
NP

tr A+ 2evdet A

where € =sign(tr A) .

How the Cayley - Hamilton Theorem can be used to calculating
the n-th roots of a 2x2 matrix can be found in Choudry’s article.
[Choudry 2004] and It can be seen that this method is not an easy and
useful method for finding n-th roots of 2x2 matrix.
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Schur Decomposition Method

A matrix that is similar to a triangular matrix is referred to as
triangularizable. This method is similar to diagonalization method.
Every 2 X 2 matrix A is similar to an upper triangular matrix. We
know that a matrix U is unitary if U* = U~! where U* shows that
conjugate transpose of U.

Schur Theorem states that if A is a square matrix, then A is
unitarily similar to an upper triangular matrix whose diagonal
entries are the eigenvalues of A.

That is, the equality T = U*AU (A = UTU*) satisfies for some unitary
matrix U and upper triangular matrix T. The Schur decomposition is not
unique. However, the eigenvalues of A will always appear on the diagonal
of T, since A is similar to T. The theorem does not guarantee that
U and T will be real matrices, even if we start with a real matrix
A. In the case A is a square real matrix with real eigenvalues, then
there is an orthogonal matrix @ and an upper triangular matrix T
such that A = QTQ ! That is, for each matrix A having real
eigenvalues, there is an orthogonal matrix @ such that QlAQis a
upper triangular matrix. So, (Q*IAQ)21 =0.
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Teeorem

Let A be a 2 x 2 matrix and U*AU = T where T is an upper
triangular matrix and U is a unitary matrix. If, T1/" is a square
root of T, then £UTY/ "1 are the square roots of A.

Proof.

Since U is unitary, we have U* = UL, Therefore, we get
(iurl/”U*)n =uTY"ur TV U = UTU = A

It means that, =UTY/"U* are the square roots of A. Now, let's
triangularize a matrix A, by using a rotation matrix Q. Then, from

cosf  sinf a b cosf® —sinf | | Ap .
—sinf cos6 c d sinf cos® | | O Ay |’
and, we obtain, ccos®§ — (a— d) cos@sinf — bsin®§ = 0. Assume that

sinf # 0, then we have cx?> — (a — d) x — b = 0 where cot§ = x.
Solving this equation, we obtain 6. Thus, we can find @ and T. O
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103 174
261 538

decomposition. We have 261x? — (103 — 538) x — 174=0 => x = —2 or
x=1/3. If x = —2, then cotf = —2, cos = —2/+/5 and
sin@ = 1/+/5. Hence, we find

1 -2 1 103 174 -2 —-1]| |16 -87
5| -1 =2 261 538 1 -2 | 0 625 [°
Therefore, square roots of A are

4 E1[ -2 —17[16 —87 Y[ =2 1
4 _ 1/4 1_ -
VA=£QTV%Q 5[1 —2“0 625} [—1 )

Let's find 4-th roots of the matrix A = { } , by using Schur

16 —s87 ¥4 1[ 14 2-5e]
0 625 = 0 35 | %

By using (1), we find {

A-s] 3 2] 2[5 8]

I
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Abel-Mobius Method

Every invertible complex matrix A = [a,-j]2x2 can associate the Maobius

transformation f (x) . Remember that M&bius transformation is given by
oa () = 20
a1x+ap’

where a, b, ¢, d are any complex numbers satisfying ad — bc # 0. Also,
we have @ 0 ¢ = @ap for invertible matrices A and B. Finding square
roots of a 2 X 2 real matrix by using Abel-Mobius method can be found
Nortshield's paper [Northshield 2010]. Let's consider the equation

ox?—(a—d)x—b=0.

. ax+b
It can be written as
cx+d

system of equation for A € RR,
ax+ b= Ax a b
ex+d=A c d
X
1

It means that, A is eigenvalue and U’ = {

= x. Therefore, we have the following

|=[3]

is eigenvector of A.

[ = X
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Teeorem

a
2 8
polynomial. If ¢ (x) is the Mébius transformation associated with A,
then the function

be a real matrix and R (x) = cx“+(d —a)x—bisa

]
(9}

o
[
x

|
N

dx

P =R

satisfies the Abel functional equation,
Fpa(x)) = F(x)+m.
for m € R. Then, we have

an (x) = F71(F (x) + nm)

n k

Wherem:/\ o and k= ‘—M

2b+al;

Moreover, \/Z is

for a real number A [Northshield 2010].
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Let A1 and Ay be the roots of R (x) = cx? + (d — a) x — b.If we choose

A A
= 7]

we have the diagonal matrix D = P~LAP. So,

Ax+1 1 X — Ap
= — = d :k
PP = dx+1 PP T N oA <X—A1> and ¢p (x) =k
Wherek:—weﬂl Then,

Pp-19aPp (X) = ¢p (x) = @p-1 (¢4 (X)) = ¢p (¢p-1 (X))
= ¢p-1 (94 (x)) = kgp-1(x).

Now, let's consider the function

X—)LQ
xX—A1 |
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. _ X—=A 1
Since, In@p-1 (x) =In (x—)ﬁ) +In =5 we have

F(x) = ke (ngp1 (x) —In (A2 — A1)
Thus,

F(ga () = 5= (ngp1 (9a (x)) — I (A2 = A1)

= iAl (Inkgp-1 (x) —In(Ap — A1)

o (@p (9= n (A2 = Av))

=F(x)+m

Also, using @p © g = @ap, We get
F (@ (x)) =m+ F(¢a(x)) =2m+ F (x) . So, by induction we have

@an (x) = F7L(F (x) + nm) where m = A;”fj\l. O
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Finding n-th roots of a 2 X 2 matrix by Abel-Mobius Theorem is
not a useful method.

11 -3
7 } Then,

Let's find square roots of the matrix A = { 1

R(X)—x —4x+3=F(x) = /chz);_ﬂ In\/fvij.
|

Then, we get F(lii_f) =F(x )~|—Inf That is, m = n\2f On the

other hand, we have F~1 (X) =

U‘I

2x

. Thus, we find @an (x) as

— _ ( n 3 X 3 n 3 n
F 1 (F(X) +mn) =F 5 (l 5%/2\/7) (4(4n g”gxi&"s 34:; )

Then, for n =1/3, we can find A = % Thus, square roots of A are

JA— if{22__3f 3\\[_66}.
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Newton's Method

Another method to computing an n-th roots of a matrix A is to apply

Newton's method to the quadratic matrix equation f(X) = X" — A = 0.

Newton's method for the matrix square root can be found in the

Higham's paper [Higham 1986]. Let f(x) a function with an initial value
f(an)

Xp. Let's define the sequence ap11 = a, — F(an)" This sequence

converges to a root of f(x). For the matrix equality
f(X) =X"—A=0, we have

-1
Xpi1 — A=X — A— (X[ — A) (nxk"*l) = Xy =051 (XHAX,}*") .

Then, the following Theorem can be expressed [Lannazzo 2006].

Teeorem

(n—1) Xy + AX"
n

where the matrices A and X; commute, then X) converges to \"/Z

or — /A, according to whether the initial value det Xy > 0 or

det Xp < 0, respectively.

be a matrix recurrance relation

Let Xk+1 =
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Let’s find square roots of the matrix A = 118 _1198 . If we take

initial matrix as Xo = | where A and Xy commute. Then, from
1
X1 =3 (2Xk + Axk—2)  we get

1 1 0 1 -—-18 1 0 1 -6
o=xi=3 (2o 1| +[ s ][0 2])=[6 7]
23
1 V)
3

(2[1 —6}{1 —18”1 —6]_2>_[ g —1331
- 8 254
6 7 (18 19 ||6 7 B 25

0.91586 —2.3245
k=2= ... X3 [2.3245 3.2403}
2 —1
k=7= ... X7 = |: 1 3 :|

If we would take the initial matrix as Xop=—/, we would find {:i _:lJ .
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Finding n-th Roots by using De Moivre's Formula for Dual,

Hyperbolic and Complex Numbers

Complex, dual and hyperbolic numbers can be represented by 2 x 2
matrices. Let's define the matrix sets,

Mi:{:z ab}:a,be]R}; (FIELD)

[a+b —b
Mg:{ b a_b]:a,bEIR}; (RING)

Mh—{—z S]:a,belR} (RING).

If we define a map @3 : C — M; by

- 0\ _ | pcos® —psin@
¢1(2) = ¢ (pe )_ [ psinf  pcosf ]

we have the equalities,

¢1(z+w) = ¢1(2) + ¢1(w) and ¢1(z x w) = @1(2) - p1(w).
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That is, ¢1 is a field isomorphism and M; and C are isomorphic fields.
That is, a complex number z = a+ ib = p (cosf + isin ) = pe?
corresponds to a matrix

. a —b | cosf —sinf
Z_a—HbH{b a }_p[sinG cosf }

b
where p = v/a? + b2 and 6 = arctan —. Also, each unit complex

a

number corresponds to a 2D rotation matrix in the Euclidean
space.

Similarly, the maps ¢ : C — M, and @3 : C — M}, defined as

. 0+1 —6
<P2(Z)_<P2(Pee)_P{ 0 1_9},

coshf sinh©
¢3(z) = @3 (Pehe) =r { sinh 8 closh9 }

are ring isomorphism.
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€0

Therefore, a dual number z = a+¢b = p (1 + 0¢) = ae® can be

represented by a matrix as

B a+b —b | _ 6+1 -0
Z“”””“’[ b a—b}_ [ 0 1—9}

b
where p = |a| and 6 = —. Each unit dual number corresponds to a
a

2D rotation matrix in the Galilean space.
Finally, a hyperbolic number
z=a+hb = kp(coshf + hsinh8) = kpe"’ corresponds to a matrix

a b cosh® sinh@
Z:k(a—i_hb)(_)k[b }: [sinhQ cosh@}

whereke{1,—1,h,—h},p:mand9:|n\/%_
2

Lorentzian rotations can be interpreted by hyperbolic numbers.
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Onek

Let’s find 3-rd roots of the matrices
3 1 5 =2 4 3
A[_13},B{2 l}amc[3 4]
These matrices correspond to the numbers
zp =3—i=v10(cos0y +isinfy), 04 = arctan (—1/3)
ZB :3+2€:3(1+938), 93 =2/3,
zc = 44 3h =7 (coshO¢ +hsinhfc), ¢ = InV/7.
Third roots of these numbers can be found easily.

Vzp = 101/6 (cos%*‘ +isin 9—“) ,

V75 = V3 (1+%e) = V3 (1+ 5e)

e = 74 (cosh %C + hsinh %C) :
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2 Matrix

Then, third roots of A, B and C are
fa 04 ]
YA_10v6| 3 "3 | [ L4594 0.15712
; 04 6, |~ | —0.15712 1.4594 |
sin — COS —
3
] 11, 2,
VB /3] 11/9 —2/9]3: gﬁ —7§x/§
| 2/9  7/9 2.z T
L 9 9
I 04 . . 04
YC71/s cosh=3" S35 | 1 14565 045647
B 0 6, | | 0.45647 1.4565
smh? cosh?
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The aim of this paper, this method to all 2x2 matrices.

As seen as, the above method can be used for only the matrices in the

form
a —b .
b 4 } via complex numbers
a—; b a_—bb } via dual numbers
Z z ] via hyperbolic numbers

For this aim, we need to define

which are isomorphic to the set of 2x2 matrices. Thus, we give
a new method which can be used for all 2x2 matrices.



Hybrid Numbers
Hybrid Numbers

Hybrid numbers are a new generalization of complex, hyperbolic and dual
numbers. It is a noncommutative ring.

Tanim
The set of hybrid numbers K, defined as

K= {a+bi+ce—|—dh ta,b,c,deR, i°=— 1, 8220, h2:1, ith=—hi=¢+i

Multiplication table of hybrid numbers as follows.

i € h
i | -1 1—h | e+ti
e | h+1 0 —¢
h| —e—i| ¢ 1

Multiplication operation in the hybrid numbers is associative and not
commutative. The conjugate of a hybrid number Z = a + bi + ce + dh,
denoted by Z, is defined as Z = S (Z) — V (Z) = a— bi — ce — dh as in
quaternions.




Character of a Hybrid Number

Tanim

(Character of a Hybrid Number) Let Z = a + bi + ce + dh be a
hybrid number. The real number

C(Z)=2Z=ZZ=2+(b—c)> -2 —d? (3)
is called the characteristic number of Z. We say that a hybrid number;
Z is spacelike  if C(Z) < 0;
Z is timelike  if C(Z) > 0;
Zis lightlike  if C(Z) =0.

These are called the characters of the hybrid numbers.

Each complex and dual number different from zero is a spacelike
number. But, a hyperbolic number can be spacelike, lightlike or
timelike.



Type of a Hybrid Number

Tanim

(Type of a Hybrid Number) Let Z = a + bi + ce + dh be a hybrid
number. The real number

A(Z)=—(b—c)?+ 2 +d?
is called the type number of Z. We say that a hybrid number;

Z is elliptic if A(Z) <0;
Z is hyperbolic if A (Z) > 0;
Z is parabolic  if A(Z) =0.

These are called the types of the hybrid numbers. Also, the vector
Ez = (b—c, ¢, d) is called hybridian vector of Z.

Each complex number is elliptic, each hyperbolic number is
hyperbolic, each dual number is parabolic.



Hybrid Numbers

Character and Type of A Hybrid Number

THE CHARACTER
Spacelike Lightlike Timelike

Hyperbolic Hyperbolic | Hyperbolic

Parabolic Parabolic
Elliptic

mwo =< -




Hybrid Numbers
Norms of Hybrid Numbers

Let Z = a+ bi + ce + dh be a hybrid number. The real number

21 = le@I= /| + (6-cp -2~

is called norm of Z.This norm definition is a generalized norm definition
that overlaps with the definitions of norms in complex, hyperbolic and
dual numbers.

| A

Formiil

1. If Z is a complex number (¢ = d = 0), then

1Z|| = 1/|ZZ| = va® + b2,

2. If Z is a hyperbolic number (b = ¢ = 0), then

1zl = /|2Z| = ViZ =7,

3. If Z is a dual number (b= d = 0), then ||Z|| = Va® = |a|.

The inverse of the number of the hybrid number Z'= a=+ bi + ce + dh.



Hybrid Numbers

Formiil

This norm definition is a generalized norm definition that overlaps with
the definitions of norms in complex, hyperbolic and dual numbers.
Actually,

1. If Z is a complex number (¢ = d = 0), then

1zl = /22| = V2 +

2. If Z is a hyperbolic number (b = ¢ = 0), then

12l = /12| = /|22 - 2|

3. If Z is a dual number (b = d = 0), then ||Z|| = Va® = |a| .

The inverse of the number of thghybrid number Z = a + bi + ce + dh,

Y4
|1Z|| # 0 is defined as Z~! = @ Accordingly, lightlike hybrid

numbers have no inverse.



Hybrid Numbers

[e]e]e}

Classification of 2x2 Matrices Using Hybrid Numbers

Just as we classify a hybrid numbers, we can classify a 2x2 matrix. Any
2x2 matrix is classified as spacelike, timelike or lightlike and sorted as
hyperbolic, elliptic, or parabolic, taking into account the isomorphisms
and relations between hybrid numbers and 2x2 matrices.

Teeorem

(Ozdemir 2018) The ring of hybrid numbers K is isomorphic to the ring
of real 2x 2 matrices My o with the map ¢ : K — My > where

at+c b—c+d
c—b+d a—c¢ } (4)

¢ (a+ bi+ ce + dh) = {

forZ = a+ bi+ ce+ dh € K.

v

The matrix ¢ (Z) € Mpy2 (R) is called the hybrid matrix corresponding
to the hybrid number Z. Also, we have

P ) (5




Hybrid Numbers
@00

Teeorem

(Ozdemir 2018) Let A be a 2x 2 real matrix corresponding to the hybrid
number Z, then there are the following relations.

i p= |zl = /Idet AT,
2
i, A(Z) = (%) — det A,
ii. P(A) =A%~ (trA)A +detA, Ay = (trA)?2 —4det A =4/ (Z) is
discriminant of the characteristic polynomial of A.
iv. Z71 exists if and only if det (A) # 0.

As a conclusion of this Theorem, we had shown that the classification of
hybrid numbers depends entirely on the determinant and the trace of the
2% 2 corresponding matrices.

Let A be a 2x2 real matrix. Then,

Z is spacelike if detA < 0;
Z is timelike  if detA > 0; (6)
Z is lightlike  if detA=0.




Hybrid Numbers
oeo

Tanim

Let A be a 22 real matrix where A1 and A, are the eigenvalues of A.
Then,

A is called elliptic if A1, Ay are complex numbers;
A is called hyperbolic if A1, Ay are real numbers;
A is called parabolic if A; = As.

Moreover, they can be defined as
A is elliptic if Ay <O;

A is hyperbolic if Ag > 0; (7)
A is parabolic  if Ay =0.

where Ay = (trA)? — 4det A.




Hybrid Numbers
[e]e] J

Norm of a 2x 2 real matrix, defined as follows :

0 = ||A|l = \/|det A|, when A is spacelike or timelike matrix,
p = |A|| = trA, when A is lightlike matrix.

So, classification 2x2 matrices can be given with the following table.

A detA >0 detA=0 detA <O
(trA)? <4detA | Timelike Elliptic %) @
(trA)°=4detA | Timelike Parabolic Null Parabolic %)
(trA)2 >4detA | Timelike Hyperbolic | Null Hyperbolic | Spacelike Hyperbolic




Polar Representations of 2

Polar Representations of 2x2 Matrices

Tanim

Let A= [ i d ] is a real matrix. Argument of A defined as follows :
i. If Ais elliptic such that trA < 0, then arg A = 6 = 7t — arctan V‘gﬁr‘;
ii. If Ais elliptic such that trA > 0, then arg A = 6 = arctan \‘/t;AT‘A;
trA+ /A

iii. If Ais hyperbolic, then arg A =0 = In %{)A ]
iv. If A is parabolic, then arg A =0 a—d
V. | IC, = = —

P & la+d|

where p = \/[det A], Ay = (trA)? — 4det A.

After that, throughout the paper, we will use the above formulas for the
argument of elliptic, hyperbolic and parabolic matrices.




Polar Representatio
(e]e]

Polar Representation of an Elliptic 2x2 Matrix

Teeorem

If A= i Z ] is an elliptic matrix, then A can be written in the polar
form as
a—d : 2b  :
A c059+(m>sm9 Msm() -
\/ECTAsinG cosf — ( a:gA)sinG
where /\ g = (trA)? — 4det A.




Polar Representations of 2x2 Matrices

@0

Proof.

If Ais elliptic, then we have Ay < 0 and det A = ad — bc > 0. The
hybrid number ¢! (A) corresponding to the matrix A is

e (15) (245 (5 (59

Therefore, according to Theorem ??, we can write
W = p(cos® + Usin0), where

U= ((a+b—c—d)i+(a—d)e+ (b+c)h).

1
V=h4

since p = v/det A and N' (W) = v/—4A. Thus, using the isomorphism
(4), we obtain (8). O




Polar Representations of 2x2 Matrices

(o] J

Let’s find the polar form of the elliptical matrix
2 3
<[ 23],

Since Ay = —8,detA=3, p = /3, we obtain the polar form

cos 6 + gsin(? 3‘f sin 0
A=+3
*T\/EsinG cos@—@sin@

where 8 = arctan v/2.




Polar Representations of 2x2 Matrice:
[e]e]e]e)

Polar Representation of a Hyperbolic 2x2 Matrix

Teeorem

If A= i Z ] is a hyperbolic real matrix, then A can be written in

the polar form as follows :
i. if A is timelike, then

cosh 6 + (?/_A%) sinh 0 %sinhQ
A=ep )
%sinh@ cosh 6 — (f/_Ai:) sinh 0
ii. if A is spacelike, then
: (a—d) 2b_
Ay sinh 0 + Ny cosh 0 mcosh@ -
\/2AiAcosh9 sinh @ — (f/_A%) cosh 0

where € =sign(trA).




Polar Representations of 2x2 Matrices

@000

Proof.

If Ais hyperbolic, then we have A > 0. Let the hybrid number ¢~1 (A)
corresponding to A be W. The matrix A can be spacelike ,timelike or
lightlike according to sign of det A. So, from Theorem (?7?), we can write

wo | o (cosh@® + Usinh0), when W is timelike;
| p(sinh@+Ucoshf), when W is spacelike;

where

1 -
V:\/TiA((a+bfcfd)|+(a—d)€+(b+c)h).

Scalar parts of these hybrid numbers depend on the

(o) =25

On the other hand, scalar part of W is S (W) = £pcosh 6. So, if

trA > 0, namely € =sign(trA) = 1, then we have to write pcosh, on
the other case, we write —p cosh 6. Thus, using the isomorphism (4), we
obtain the equalities (9) and (10). O




Polar Representations of 2x2 Matrices

[e] lele]

Let’s find polar form of the timelike and spacelike hyperbolic matrices
-2 3 3 2
a=[ 7 3 ms=]22]

A and B are timelike and spacelike matrices, respectively. Since €4 = —1,
eg =1 pa =15 pg=1and Ay =16 and, Ag = 20, we find

cosh By + 3 sinh @4 3 sinh 64
A= 7\/5 2 2
%sinh 04 coshf, — %sinh 04
sinh g + gcosh 0p 2f cosh g
2\f cosh g sinhfg — @cosh 0p

where 84 = Inv/5/5 and 85 = In(v/5 + 2), respectively.




Polar Representations of 2x2 Matrices

[e]e] o)

Teeorem

IfA = i Z is a lightlike hyperbolic matrix, then A can be written in

the polar form as

(11)

,ﬁ
o e
> g

hN

| E—

A—trAl

=3
hN
[=3
bN

Proof.

If the matrix A is lightlike, hyperbolic, then det A = 0 and
(trA)?2 > 4det A = 0. So, trA # 0 and the polar form of the hybrid
number ¢~ (A) corresponding to A can be written as

W=t (4 + (252579 ) i+ (324 ) e+ (5E5 ) h) -

Therefore, using the isomorphism (5) we get the polar form of A as
(11). O




Polar Representations of 2x2 Matrices

oooe

The polar representation of the lightlike hyperbolic matrix
6 3
=[]

3/4 3/8
C:8{ 1/2 1/4 }




Polar Representations of a Parabolic 2x2 Matrix

Teeorem

If A= 2 b ] is a timelike parabolic matrix such that a # d, then A

d
can be written in the polar form as

2
1+ e ae_b(;
A= % 2ech (12)
1—e€0
a—d €

a—
here 0 =
where a1 d]

and € = sign(trA).




Polar Representations of 2x2 Matrices

@000

The hybrid number corresponding to A is (5). If A is parabolic, then we
have (trA)> = 4det A. Therefore, we get

— __ €trA
IW]| = /Idet A] = €52

where € = sign (trA) . Thus, according to the Theorem (??), the polar
form of the W is

A b—c—d\: —d b
ertr (€+(a+etr£ )I+(ztrA)£+(ettf\‘)h)'

Since the argument of W is

we have

=t e (1 )1 e (51

Thus, using (4) and trA=a+d = g—d we obtain, (12). O




The polar form of the parabolic matrix

5 9
=5
is
A—i 146 30
T 2|—-6/3 1—96
a—d 3
Where9—|a+d|—§

Polar Representations of 2x2 Matrices

o] lele)

|




Polar Representations of 2x2 Matrices

[e]e] o)

Teeorem

If A= a d is a lightlike parabolic matrix, then det A = 0 and

trA = 0. So, A can be written as

2
g Oroo
¢ c 0|’

(o —a

—
(o)
o
[E—

depending on whether ¢ # 0 or ¢ = 0, respectively. A parabolic lightlike
matrix is a nilpotent matrix. That is, A" =0, for all n € IN.

Proof.

If Ais a parabolic null matrix, then det A = 0 and trA = 0. It means that
a+d=0and ad — bc =0.So, d = —a, bc = —a2. If c = 0, then
a=d = 0. In the case ¢ # 0, we obtain b= —a%/c. O




Polar Representations of 2x2 Matrices

[e]e]e] )

Teeorem

If the matrix A =

|

b | . . . ..
2 d } is a timelike parabolic matrix with a = d.
So, A can be written as

1 0 1 b/a 1 0
A:a{c/a 1},A:a{0 1 ]orA:a[o 1} (13)

whether if b=0, c =0 or b = c = 0, respectively.

Proof.

If Ais parabolic, then (trA)®> = 4det A. So, in the case a = d, we find
that a®> = a® — bc and bc = 0. O




e's Formula

De Moivre's formula for 2x2 Matrices

Teeorem

Let A = [ i 3 } be a real matrix,
If A is an elliptic real matrix whose polar representation is
a—d . 2b :
Ay cosG—i—(m)smG \/TAAsmé)
2c . a—d . '
msm@ cosG—(m) sin6
then A" has the form
a—d . 2b .
g cos(nb)+ (m> sin(n6) Nyl (n6)
2c : . a—d .
755 sin (n@) cos(nf) (\/W) sin(nb)

forn € Z.




De Moivre's Formula
Ornek

Let's calculate A~" for the elliptic matrix

=3 4]

Using the above theorem we find that

cos(nB) — sin(nf) —2sin (nb)

AN = p*” [ P (ng) cos(ne) + Sin(ne)

where, p = \/5 and 0 = arctan 2.

ii. if Ais spacelike, then



De Moivre's Formula

De Moivre's formula for Hyperbolic Matrices

Teeorem

If A is a timelike hyperbolic real matrix whose polar representation is

cosh 6 + (\ﬁ) sinh 0 %sinh@
A=
* 2¢ ginh g ho— D ginhg |
5 sin cos 73, Sin
then
o cosh(nf) + (:—’/}:) sinh(nf) %sinh(nQ)
A" =¢€"p
2€ ¢ _ (a—d)
msmh(n@) cosh(n@) NIy sinh(n@)

(17)
for n € Z, where € =sign(trA).

It can be proved by induction similar to proof of Theorem 5.1 and using
the equality A4 = 4A = a2 — 2ad + d? + 4bc. ]




De Moivre's Formula

Teeorem

Let A be a spacelike hyperbolic real matrix whose polar representation is

sinh 0 + (F) cosh 0 \/2:; cosh 0
~=0 2¢_ ¢osh 0 sinh @ — (""*d)coshG
VAa VAL

i. If nis an even integer, then A" is a timelike matrix and

Aty cosh(nf) +f/}: sinh(nB) 2TbA sinh(nf)
26 of a—d
msmh(n@) cosh(nf) — Fsmh(n@) -
ii. If nis an odd integer, then A" is a spacelike matrix and
sinh(n6)+2=< cosh(nf) 2Ab cosh(n@)
A" =¢"p" , Vaa Vaa J (19)
c - _a—
= cosh(n@) sinh(n6) Ny cosh(n@)
where e=sign(trA), p=+/|det A|, 6=In WAL VAL

and

|det A|



De Moivre's Formula
Ornek

Let's find A” and B" for the hyperbolic matrices

-2 3 3 2
A—[l _4}and3—[21].

Considering the Example 4.5, we find

AP = (1) 5772 g [ cosh nf + 4 sinh nd 3 sinh no ]
%sinh no cosh ne—%sinh n6
g sinh nf + ﬁ cosh nf 2‘f cosh nf
- 2f cosh nf sinh nf — @ cosh nf
f

where 84 = In %2 and g = In(\/5 + 2), respectively.




De Moivre's Formula

Teeorem

If A is a spacelike hyperbolic real matrix such that trA = 0, then A" is

pn-1 [ a b } when n is odd:

c —a
AT = (20)
Al 1 0 .
[ when n is even.

where A" is a parabolic matrix.




De Moivre's Formula

Proof.

Let A be a spacelike hyperbolic matrix such that trA = 0, then we have
o=+ —detAand A= —detA > 0. So, we get

0=In|TATVAA) n‘zv*detA’:lnlzo
2./|det A| 2y/—detA :

Thus, according to (18) and (19), we obtain

n n|l 1 0 n n— a b
Al =p [0 1}orA =p 1[6 —a}

for n is even or odd, respectively. ]




Let's find Al for
7 3
=[5 3]

A is a spacelike hyperbolic matrix such that trA = 0. Since p =5, we
find Al = 5104,

Sonuc

Let A be a 2 x 2 spacelike hyperbolic matrix such that trA =0. A" is a
parabolic matrix if and only if n is an even number.

A" is a parabolic matrix if and only if A (A") = 0. According to (20),

A (A7) = —p2("=1) det A for n is odd number and A (A") = 0 for n'is
even number. We know that det A < 0 for a spacelike matrix, then

det A 0 and A (A") # 0 for n is odd. So, A" is a parabolic matrix if
and only if n is an even number. O




De Moivre's Formula

Let A be a 2 x 2 lightlike parabolic matrix such that trA =0. A" is a
parabolic matrix if and only if n is an even number.

Teeorem

| A

If A be a lightlike hyperbolic real matrix whose polar representation is

a b a b

A —trAl oA ] . Then, A" = (trA)" l wA ] .
c d c d
trA trA trA trA

forne Zt.




De Moivre's Formula
o

Teeorem

If A, a # d is a timelike parabolic matrix whose polar representation is

ef+1 213_63 . end +1 2bj€5

A= ? . then A" = (4 ?
2cef 1— 0 2cnef 1 — end
a—d a—d

for n € Z where 0 =

\ZZ\ and € =sign(trA).




De Moivre's Formula

Ornek

5 9
-1 -1

|
—
‘

Let's find n-th power of the matrix A =

. . 1406 36 .
Polar form of the matrix A is 2 [ “6/3 1-0 } where 8 = 3/2. So, we
. 1+ nb 3n0
n __ n
obtain, A" =2 [ " 00/3 1—nf ] for n € Z.

Teeorem

—
[\§)

IfA= c Z ] is a lightlike parabolic real matrix, then A" = O for all
neZr.

Ornek

Let's find n-th power of the matrix A = [ i _; . This matrix is a
lightlike parabolic matrix, since trA = 0 and det A = 0. So, A" = 0 for all

neZt.

I
[ S
N,




n-th Roots of a 2x2 Matrix

In this section we study n-th roots of a 2 by 2 real matrix, considering
the De Moivre's formulas given above.

Teeorem

a b .
Let A= [ ] be a real matrix.

c d
If A is an elliptic real matrix, then the n-th roots of \”/Z the matrix A are

9+27rk4(3 d) 9+27'(k b 9+27'[k
cos sin sin
pl/n V—Ap VvV —A
C o 0427k 9+27‘[k (a—d) . 6+2mk
7% sin = cos —, SN

(21)

where k =0,1,2,...,.n— 1.

4



Let’s find n-th roots of the elliptic matrix A = { _11 i } . According to

Theorem (6.1), we obtain

0+ 27k 0 + 27tk
cos% ﬁsin%
YA =31/
V2 . 042k 0 + 27k
——sin — cos ———
2 n n

where k =0,1,2,...,n—1 and 6 = arctan ﬁ For instances, square
roots of A are

s cos 9+%7‘L’k \/isin 6+%7rk
A, =VA=3l , for k=0,1.
_4 . 9+§7rk cos 9+%7rk




Thus, we find square roots of A as

cos arcta2n\@ \/Esin arcta2n\5
V2

| =5 sin
| 1.1688 0.8556
— | —0.4278 1.1688 |’

Al _ 31/4

arctan \/§ arctan \ﬁ
— 2 5=

Cco

cos 27r+ar<étan V2 ﬁsin 27T+ar§tan V2
A2 _ 31/4
_@ & 27T+ar§tan V2 cos 27T+ar§tan V2

| —1.1688 —0.85560
~ 1042780 —1.1688 |°




Similarly, third roots YA are

, s cos 6+:2))71k ﬁsin 9+§7‘[k
VA =3l , for k=0,1,2.
_g o 9+§nk cos 6+%7rk

So, the roots Q/Z are

(arcta?)n \5) \@sin (arcta3n ﬁ)

Ay = 31/6
ﬁ in (arct;;n \fZ) cos (arctz;’n \/5)

2

- 1.1406 0.53174
— | —0.26587 1.1406




cos 274arctan 2 ﬁsin 2m4arctan V2
Ay =31/6 ’ °
_4 sin 27T+ar§tan \/§ cos 27'(+ar§tan V2

[ —0.8959  1.131
~ | —0.56551 —0.8959 |-

and
cos 47r+ar§tan \@ ﬁsin 47T+ar§tan ﬁ
A3 _ 31/6
_@ & 47T+ar§tan V2 cos 47T+ar§tan V2

0.83138 —0.24466

- { —0.24466 —1.6628 }




If A is elliptic matrix, then there are n matrices X satisfying the
equality

X" = A.

So, an elliptic matrix has 2 square roots.

4

For example, the eliptic matrix A = [ 1

_57 } has 7 seventh roots.



Teeorem

If A is a timelike hyperbolic real matrix,
i. If n is even number and €5 = 1, then n-th roots of A are

b (a-d) 2 b
cosh — + **—=sinh — —<Z sinh —
VA VA
VA = £pl/n n A n AN (22)
\/2AC7 sinh — cosh — (:3/;%) sinh —
sinh — + (a=9) cosh =~ 2b_ (ooh —
VA VA
\H/Z :Epl/n A A
2¢_ cosh Q sinh Q B Cl:) NN
VA VAa n
(23)
ii. If n is odd number, then n-th roots of A are
coshg—l—%sinhf %sinhf
VA =eppl/m 7 " n A (24)
2¢_ginh Q cosh Q — =9 gnh Q
VA n n VA n




Proof

Let the matrix X be an n-th root of A. Then we have X" = A. X can be
one of the forms (9), (10) or (11). If X in the form (9), that is X is a
timelike hyperbolic matrix, we can write as

coshﬁ—l— smhlB 2—bsinhlB
X = €xpx F F
\/2AiAsinh,B cosh B — F smhﬁ
So, considering the Theorem (18), we have
Ximellph cosh(np)+ F smh(n,B) ;Tbjsinh(nﬁ)
XIZX X a—d i
\/2AC7 sinh(npB) cosh(np) — (\/H) sinh(npB)




Therefore, from the equality X" = A and equality of matrices, we obtain,

p= % and ey = €p.
If nis even, then we have p] = €p and it has a solution if and only if
€ = 1. If nis odd number, then ex = € and px = {/p. If X in the form
(10), then X is in the form

sinh B+ L\/Ai:\)coshﬁ %coshﬁ
X = expx )
\/A%\ cosh sinh § — F ) cosh B




So, if n is odd, we have no solution for X" = A, since

s sinh(nB)+ F) cosh(npB) f cosh(np)
= €xPx
\/2A67 cosh(np) sinh(nB) — cosh(nﬁ)
If nis even number, then
0 cosh(nﬁ)—&—(f/}:) sinh(nB) \/—[L smh(nﬂ)
g jgjsinh(nﬂ) cosh(np) — F smh(nﬁ)

Thus, we have another solution where § = % and p7 = ep for e = 1. At
last, we can see that there is no solution, if X is in the form (11). O




Now, let's give two examples for n is odd or even.

Ornek

0 E 3 . | —-13 =21
Let’'s find \/Z for the matrix A = { 14 2

hyperbolic matrix, since Ay = 49 and det A =8 > 0. Then, the polar
form of A is

A—f[ cosh 6 — 5sinh 6 —6sinh 6 }

} A is a timelike

4sinh 0 cosh O + 5sinh 0

where 8=In2+/2. Using the Theorem (6.7), we find v/A as

cosh '"2‘[ — 5sinh '”2f —6sinh %

VA =8!0

4sinh'”%f cosh”‘%ﬁ+55inh|"%ﬁ




Let’s find W for the matrix
11 10
A [ 1 } |

A is a timelike hyperbolic matrix, since Ay = 225 and det A = 16 > 0.
Then, the polar form of A is

cosh9—|—lsinh9 isinhf)
A=4 ) 3 3 1
3 sinh 0 cosh 6 — 3 sinh 0

where 6 = In4.




Therefore, since n = 4 and €4 = 1, there are four roots VA, and these
are,

1 4
cosh In4 + = sinh Ind ~sinh In4
n 4 4 4 4
— 4 3 3
VG5 Z sinh In4 cosh'"—‘l—lsmhIn4
3 & 3 s
1(5 2
A12_i3[1 4]
4
sinh '"4 + = cosh '”4 ~ cosh In4
VA= +/4 3 3 ¢
& e gcosh'”—4 sinh In4 _ 1coshIn4
3 4 4 3




Teeorem

Let A be a spacelike hyperbolic matrix
i. If n is odd number, then /A is

o (@ a—d 0 2b 0
YA = pl/n sinh {4 75 cosh VA SN (25)
o 2¢_ cosh 2 sinh & — (229 cop @
VAA n n N/ n

ii. If n is even number, then there is no n-th root of A.

It can be proved similar to Theorem (6.7). O




Let's find \S/Z for the matrix

—13 5
a=| 23]

A is a spacelike hyperbolic matrix, since Ay = 125 and detA = —1 < 0.

sinh @ — 3‘/5 cosh 0 2f cosh 0

A p—
2‘[ cosh 6 sinh9—|— 3‘5f cosh 0

where 6 = In (5\@%11) . So, the only 5th root of A is

sinh ¢ — icosh 2 2\[ cosh ¢ 0 [ 2 1 }
9 = :
—% cosh % sinh = + 3‘f cosh 9




Ornek

There is no any root v/A for the spacelike hyperbolic matrix

A= [_35 _21} , since a spacelike hyperbolic matrix has not an nth root
if nis even.

Teeorem

Let A be a lightlike hyperbolic real matrix whose polar representation is

a b a b
A= trA [ trA trA 1 . then, \N/Z _ (trA)l/” [ rA trA 1 .
c d c d
trA  trA trA  trA
forne Z7*.

It can be seen from Theorem 5.10 and Corollary ?7.




n-th Roots of a Parabolic Matrix

Teeorem

Let A= [ i Z ] , a # d be a timelike parabolic real matrix whose

polar representation is

2bed €0 7 _2bed
A:% €0 +1 a—d then, \H/Z: (%)1/n n n(a—d)
2cef 1—¢h 2cef _€b
a—d n(a—d) n
where 6 = I‘;;ZI and € =sign(trA).




Proof

Let X be a matrix satisfying the equality X" = A. Because of that A is a
timelike parabolic matrix, X must be a parabolic matrix according to
Corollary (??). Then, the matrix X can be in the form

2yep

X:|:X Y]:trzx €'B+1 x—t
z t 2z€

x—‘f 1_€ﬁ

where trX = x+t, f = and (x — t)? = —4yz. According to (?2),

we have

- |x+t\

enp+1 2

x—t

2zenp 1 enﬁ




Proof.
Thus, using the equations (X");; = A11 and (X"),, = A2, we find

()" (ens+1) = % (e0+1)

n
()" (1-enp) = (1-e0).

; - X wa )" 0
Solving these two equations, we obtain “5 = (rT) and = 7.
Therefore, we have

2yeld

X":(M) e0+1 =

2
2zeb
% 1—¢b




Proof.
Also, we can see that the equality X" = A satisfies if and only if
y _ _b z _ _c x—t _ _a—d
x—t = a—d and x—t = a—d and [x+t| = nla+d|"

a+d
2

X:(#)l/"+(agd)kandt:( 5

According to this, we can obtain y = bk, z = ck,
1/
) " ("”’d) k where

1—n
k== (#) " As a result, we find

€l
1/n 7+1 n(a—d)
Va— (EA
\/Z_(2) 2ced 1 _eb

n(a—d) n




Ornek
Let's find n-th roots of the parabolic matrix

11 —12
-[3 )

The polar form of the matrix Ais A=05 [ 1+0

Therefore, we get

A _ gl/n 1+6/n —20/n
VA= {9/2,1 1-60/n

0/2 1-—

E

—20

0

} where 6 = §
5




Teeorem

If A:{i S] be a timelike parabolic real matrix, then /A is

1 0 1/n 1 b/an 1/n 0
[c/an 1}’3 [0 1 ora 1

according to b =0, c =0 or b = ¢ = 0, respectively. Moreover, if n is
even and b= c = 0, then VA is

t 5
32/’771'2
f _t

O =

fort,s € R, s # 0.




Proof.

If A is timelike parabolic, then bc = 0. So, A can be one of the forms
(13). So, according to Theorem ??, we find V/A as

1/n 1 0 1/n 1 b/an 1/n 1 0
a {c/an 1]'3 [0 1 ora 0 1

for b=0, c=0o0r b =c =0, respectively.
Moreover, from the Theorem 5.6, we can find different roots for

1 0
Aa{0 1]

Assume that X" = A satisfies, where X = [ ; —yx ] . O




According to the equality

n_ n/2| 1 0| 1 0|
X" = (—det X) [01]—59[01 = A,

we find a = (—det X)™? and a%/" = x2 4 yz.

2/n 2
. a -
Therefore, for x =t and y = s, we obtain z = —— . As a result,
S
t S
a2/n t2

=i

S

is a n-th root of A for t,s € R, s # 0 and n is even. That is, in the case
b= c =0 and n is even, we have infinite n-th roots for A. O




Let's find /A for
8 0
A_{O 8].

According to Theorem 6.17, we get

.

for s, t € R.




Some Conclusions
1. Type of a Power of A 2x2 matrix
Type and character of a power of a 2x2 matrix are summarized with the

following table.

Type and Character of Power of a 2x2 Matrix

S ik Spacelike
Hyperbolic paceiike Hyperbolic Lightlike
A | Elliptic | Paraboli Hyperbolic & -
1plic | Xarabole | (g 42 0) (}t]II')A -0) (trd=0), Hyperbolic
(det 4% 0)

Parabolic if n
n _ . . is even; Spacelike Lightlike
4" | Elliptic | Parabolic | Hyperbolic Hyperbolic if Hyperbolic Hyperbolic

n is odd




2. De Moivre’s Formula for 2D Rotation Matrices

Eliptic Rotation Hyperbolic Rotation

Parabolic Rotation




The polar representations of the matrices

Re— cosf —sinf | cosh® sinh6 _|e+1 -0
E= |sin0 cos® |' "L7 |sinh® coshO|' "¢~ | 6 1-6

are themselves, since A = — sin? 0, A = sinh? 0, where Rg, R; and,
R¢ are rotations matrices in the Euclidean, Lorentzian and Galilean
plane, respectively.

So, de Moivre's formula for these matrices as follows :

n_|cosnf —sinnf n_ | coshn@ sinhn6 n_|n@+1 —nb
E7\sinnd cosnf |’ "L |sinhn@ coshnf|' "G | nb 1—nb|"

forne Z.



Number of n-th roots of a 2x2 real matrix

As it can be seen from the above theorems,
A 2x2 real matrix
a b
2

one,

two,

four,

n or
infinitely many

may have

nth roots, or it may have not a root. We can summarize all results
with the following corollary.



Sonug

A matrix B is said to be an n-th root of a matrix A if B" = A, where

n>2 IfA= [i , then the number of nth roots of a A is as follows

b
d
An elliptic matrix has exactly n nth roots.

A timelike hyperbolic matrix has exactly four nth roots if n is even.
A timelike hyperbolic matrix has only one nth root if n is odd.

A spacelike hyperbolic matrix has not an nth root if n is even.

A spacelike hyperbolic matrix has only one nth root if n is odd.

A lightlike hyperbolic matrix has only one nth root if n is odd.

A lightlike hyperbolic matrix has two nth roots if n is even.

A timelike parabolic matrix has only one nth root if a # d.

A nonzero lightlike parabolic matrix has not an nth root.

A non-scalar timelike parabolic matrix has only one nth root if
a=d.

A scalar matrix has infinitely many nth roots.

(]

Each lightlike parabolic matrix is a root of zero matrix.




Comparing The Known Methods

Basic Algebraic Method : Solving the system of higher degree
equations can be difficult and messy.

Diagonalization : It is a commonly used method. But, it works
only for diagonalizable matrices.

Schur Decomposition Method : It is works only for
triangularizable matrices. A disadvantage of this method is that if A
has nonreal eigenvales, the method necessitates complex arithmetic
if the root which is computed should be real.

Cayley Hamilton Method : Even if it is the best method for
finding square roots, it is difficult to apply for finding the roots of
degree greater than 2. For higher degrees, the computations can
become long and messy.

Newton Method : It does not give results in rootless matrices. It
is long and tedious for n > 2. If it is not known that matrix has not
a root, it will be a complete waste of time.



o Using Complex, dual and hyperbolic numbers : It can only be
used for some three specific matrix types.

@ Abel-Mobius Method : It is the most difficult, tedious and
complicated one in the methods.

e De Moivre’s Formula (Hybrid Numbers) : This method can be
used for all 2 X 2 matrices. It is suitable for the computer algorithm,
and after type and character of the matrix is determined, the result
can be directly calculated by substituting the n and 6 values in the
appropriate formula. No complicated function and process
information is required. The basic matrix, trigonometry and
hyperbolic function knowledge is sufficient to obtain the result. In
addition to all of these, if the number n is greater than 2, operations
are not confused and difficult. That is, in the case n > 2, it is an
easy and fast alternative method that can be used to find n-th root
of any 2 X 2 matrix. But, this method can be used only to find the
real roots of a matrix.



Comparing The Known Methods (good to bad)

No | Name of Method Disadvantages
It is valid only f

1 Diagonalization . o va I, onyfor .
diagonalizable matrices
It is valid only for

2 Schur Decomp. Method . . .
triangularizable matrices
It is difficult t ly i t

3 Cayley Hamilton Method 'S diincult to apply In roots
of degree greater than 2

4 Newton Method It 'does not give r.esults in rootless matrices
It is long and tedious for n > 2.

5 Using C,ID and ID It can only_ be useq for some
three specific matrix types.

. . Solving the higher degree equation
B Al Method .

0 asic Agegraic Wetho can be difficult
T ly thi thod i

7 | Abel-Mobius Method o apply This menod 1s Very
difficult, long and tedious.
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