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Elliptic Quaternions and Generating Elliptical
Rotation Matrices∗

Mustafa Özdemir†

January 26, 2016

Abstract

Elliptical rotation is the motion of a point on an ellipse through some angle about
a vector. The purpose of this paper is to examine the generation of elliptical rotations
and to interpret the motion of a point on an elipsoid using elliptic quaternions, elliptic
inner product and elliptic vector product. In this paper, we define elliptic quaternions
and generate an elliptical rotation matrix using those quaternions.
Keywords : Elliptic Quaternion, Rotation Matrix, Elliptical Inner and Vector Product.

1 Introduction

A rotation is an example of an isometry, a map that moves points without changing the
distances between them. A three dimensional rotation is a linear transformation that de-
scribes the motion of a rigid body around an axis and can be expressed with an orthonormal
matrix which is called a rotation matrix. 3× 3 rotation matrices form a special non abelian
orthogonal group, denoted by SO(3). The group of 3× 3 rotation matrices is isomorphic to
the group of rotations in a 3 dimensional space. This means that multiplication of rotation
matrices corresponds to composition of rotations. Rotation matrices are used extensively
for computations in geometry, kinematics, physics, computer graphics, animations, and op-
timization problems involving the estimation of rigid body transformations. For this reason,
the generation of a rotation matrix is considered to be an important problem in mathematics.

There are various representations for rotations as orthonormal matrices, Euler angles,
Cayley map, Rodrigues rotation formula, Householder transformation and unit quaternions
in the Euclidean space. But to use the unit quaternions is a more useful, natural, and
elegant way to perceive rotations compared to other methods. Quaternions were discovered
by Sir William R. Hamilton in 1843 and the theory of quaternions was expanded to include
applications such as rotations in the early 20th century. The most important property of the
quaternions is that every unit quaternion represents a rotation and this plays an important
role in the study of rotations in 3-dimensional vector spaces. Quaternions are used especially
in computer vision, computer graphics, animation, and kinematics.

A similar relation to the relationship between quaternions and rotations in the Euclid-
ean space exists between split quaternions and rotations in the Minkowski 3-space. Split
quaternions are identified with the semi-Euclidean space E4

2. Besides, the vector part of split

∗THIS PAPER is a part of the paper "An Alternative Approach to Elliptical Motion". Ad-
vances in Applied Clifford Algebras, 2015
†Department of Mathematics, Akdeniz University, Antalya, TURKEY, e-mail: mozdemir@akdeniz.edu.tr
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quaternions was identified with the Minkowski 3-space [2] . Thus, it is possible to do with split
quaternions many of the things one ordinarily does in vector analysis by using Lorentzian
inner and vector products.
Each of quaternion algebraH and split quaternion algebra Ĥ is an associative, non-commutative
ring with generating by four basic elements {1, i, j,k}. Unlike the quaternion algebra, the split-
quaternions contain zero divisors and nilpotent elements. We can express any quaternion q
as q = (q1, q2, q3, q4) = q1 + q2i + q3j + q4k or q = Sq +Vq where the symbols Sq = q1 and
Vq = q2i+ q3j+ q4k denote the scalar and vector parts of q, respectively. If Sq = 0 then q is
called a pure quaternion. The conjugate of q is denoted by q, and defined as q = Sq −Vq.
A comparison of the properties of quaternions and split quaternions can be given as follows.
In this table, only different properties are compared.

Properties Quaternion Algebra H Split Quaternion Algebra H

Algebra i 2 = j2 = k2 = ijk = ?1 i 2 = ?1, j2 = k2 = ijk = 1

Norm qqq = qq = qq = q0
2 + q1

2 + q2
2 + q3

2 |qq | = |qq | = |q1
2 + q2

2 ? q3
2 ? q4

2 |

Types
No different types

since q0
2 + q1

2 + q2
2 + q3

2 > 0.

Timelike if q1
2 + q2

2 ? q3
2 ? q4

2 > 0

Spacellike if q1
2 + q2

2 ? q3
2 ? q4

2 < 0â

Lightlike if q1
2 + q2

2 ? q3
2 ? q4

2 = 0

Zero divisor No zero divisor (Division Ring) Contains zero divisor (Non­divison ring)

Isomorphic to
an even sub algebra C§3,0

+ with

á1,e2e3 ¸ j,e1e3 ¸ k,e1e2 ¸ iâ

an even subalgebra C§2,1
+ with

á1,e2e3 ¸ i,e3e1 ¸ k,e1e2 ¸ jâ

Quaternion

Product (pq)

p1q1 ? ÖVp,Vq ×E+p1Vq+q1Vp+Vp ×E Vq

pq =

p1 p2 p3 p4

p2 p1 ?p4 p3

p3 p4 p1 ?p2

p4 ?p3 p2 p1

q1

q2

q3

q4

with Euclidean dot and vector product.

p1q1+ÖVp,Vq ×L+p1Vq+q1Vp+Vp ×L Vq

pq=

p1 ?p2 p3 p4

p2 p1 p4 ?p3

p3 p4 p1 ?p2

p4 ?p3 p2 p1

q1

q2

q3

q4

with Lorentzian dot and vector product.

Rotation

Kind
Euclidean spherical rotations Lorentzian, hyperbolical and

spherical rotations

Unit

Quaternion
q0=

q
qqq

, if qqq ® 0. q0=
q

qqq
, if q1

2 + q2
2 ? q3

2 ? q4
2 ® 0.

Rotation

Group

The set of unit quaternions is a group

Each unit quaternion represents a

rotation in Euclidean 3­space.

The set of unit split quaternions is not

a group. But, The set of timelike

quaternions is a group. Each unit timelike

quaternion represents a rotation

in Minkowski 3­Space.

Polar Form
for unit q

q0=ÝcosS + P sin SÞ, P2=?1

q=sinh S + P0 coshS,P2=1 if q spacelike.

q=cosh S+P0 sinh S,P2=1 if q timelike

with spacelike Vq

q=cosS+P0 sin S, P2=?1 if q timelike

with timelike Vq

2



Each unit quaternion represents a rotation in the Euclidean 3-space. That is, only four
numbers are enough to construct a rotation matrix, the only constraint being that the norm
of the quaternion is equal to 1. Also, in this method, the rotation angle and the rotation axis
can be determined easily. However, this method is only valid in the three dimensional spaces
([15], [18]). In the Lorentzian space, timelike split quaternions are used instead of ordinary
usual quaternions ([4], [5]).

Let q and r be two quaternions. Then, the linear transformation Rq : H → H defined
by Rq (r) = qrq−1 is a quaternion that has the same norm and scalar as r. Since the scalar
part of the quaternion r doesn’t change under Rq, we will only examine how its vector part
Vr changes under the transformation Rq. We can interpret the rotation of a vector in the
Euclidean 3-space using the quaternion product qVrq

−1.
3D Rotation Matrices and Unit Quaternions

If q = q0 + q1i + q2j + q3k = cos θ + ε0 sin θ is a unit quaternion, then, using the
linear transformation Rq (Vr) = qVrq

−1, the corresponding rotation matrix can be found
as

Rq =

 q2
0 + q2

1 − q2
2 − q2

3 −2q0q3 + 2q1q2 2q0q2 + 2q1q3

2q1q2 + 2q3q0 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q1q0

2q1q3 − 2q2q0 2q1q0 + 2q2q3 q2
0 − q2

1 − q2
2 + q2

3

 . (4)

This rotation matrix represents a rotation through angle 2θ about the axis ε = (q1, q2, q3) .
In the Lorentzian space, the rotation matrix corresponding to a unit timelike quaternion
q = q0 + q1i+ q2j+ q3k is,

Rq =

 q2
1 + q2

2 + q2
3 + q2

4 2q1q4 − 2q2q3 −2q1q3 − 2q2q4

2q2q3 + 2q4q1 q2
1 − q2

2 − q2
3 + q2

4 −2q3q4 − 2q2q1

2q2q4 − 2q3q1 2q2q1 − 2q3q4 q2
1 − q2

2 + q2
3 − q2

4

 . (see[4]).

Details about generating rotation matrices, particularly in the Euclidean and Lorentzian
spaces, using these methods can be found in various papers, some of which are given in the
reference section. Those authors mostly studied the rotation matrices in the positive definite
scalar product space whose associated matrices are diag(±1, · · · ,±1) , and interpreted the
results geometrically. For example, quaternions and timelike split quaternions were used to
generate rotation matrices in the three dimensional Euclidean and Lorentzian spaces where
the associated matrices were diag (1, 1, 1) and diag (−1, 1, 1) , respectively. In these spaces,
rotations occur on the sphere x2 +y2 +z2 = r2 or the hyperboloids −x2 +y2 +z2 = ±r2. That
is, Euclidean and Lorentzian rotation matrices help us to understand spherical and hyperbolic
rotations. In the Euclidean space, a rotation matrix rotates a point or a rigid body through
a circular angle about an axis. That is, the motion happens on a circle. Similarly, in the
Lorentzian space, a rotation matrix rotates a point through an angle about an axis circularly
or hyperbolically depending on whether the rotation axis is timelike or spacelike, respectively.

In this paper, we investigate elliptical rotation matrices, which are orthogonal matrices
in the scalar product space, whose associated matrix is diag(a1, a2, a3) with a1, a2, a3 ∈ R+.
First, we choose a proper scalar product to the given ellipse (or ellipsoid) such that this ellipse
(or ellipsoid) is equivalent to a circle (or sphere) for the scalar product space. That is, the
scalar product doesn’t change the distance between any point on the ellipse (or ellipsoid) and
origin. Interpreting a motion on an ellipsoid is an important concept since planets usually
have ellipsoidal shapes and elliptical orbits. The geometry of ellipsoid can be examined using
affi ne transformations, because of an ellipsoid can be considered as an affi ne map of the unit
sphere.

3



The aim of this study is to explain the motion on the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1,

as a rotation, using the proper inner product, vector product and elliptical orthogonal ma-
trices. In this method, the elliptical inner product, the vector product and the angles are
compatible with the parameters θ and β of the parametrization

ϕ (θ, β) = (a cos θ cos v, b cos θ sinβ, c sin θ) .

In this paper, we defined the elliptic quaternions and generate elliptical rotations using unit
elliptic quaternions for a given ellipsoid.

2 Elliptical Inner and Vector Product

We begin with a brief review of scalar products. More informations can be found in ([8],
[9] and, [14]). Consider the map

B : Rn × Rn → R, (u,v)→ B (u,v)

for u,v ∈ Rn. If such a map is linear in each argument, that is,

B (au+ bv,w) = aB (u,w) + bB (v,w) ,

B (u, cv + dw) = cB (u,v) + dB (u,w) ,

where, a, b, c, d ∈ R and u,v,w ∈ Rn, then it is called a bilinear form. Given a bilinear
form on Rn, there exists a unique Ω ∈ Rn×n square matrix such that for all u,v ∈ Rn,
B (u,v) = utΩv. Ω is called "the matrix associated with the form" with respect to the
standard basis and we will denote B (u,v) as BΩ (u,v) as needed. A bilinear form is said to
be symmetric or skew symmetric if B (u,v) = B (v,u) or B (u,v) = −B (v,u), respectively.
Hence, the matrix associated with a symmetric bilinear form is symmetric, and similarly,
the associated matrix of a skew symmetric bilinear form is skew symmetric. Also, a bilinear
form is nondegenerate if its associated matrix is non-singular. That is, for all u ∈ Rn, there
exists v ∈ Rn, such that B (u,v) 6= 0. A real scalar product is a non-degenerate bilinear form.
The space Rn equipped with a fixed scalar product is said to be a real scalar product space.
Also, some scalar products, like the dot product, have positive definitely property. That is,
B (u,u) ≥ 0 and B (u,u) = 0 if and only if u = 0. Now, we will define a positive definite
scalar product, which we call the B-inner product or elliptical inner product.

Let u = (u1, u2, ..., un), w = (w1, w2, ..., wn) ∈ Rn and a1, a2, .., an ∈ R+. Then the map

B : Rn × Rn → R, B (u,w) = a1u1w1 + a2u2w2 + · · ·+ anunwn

is a positive definite scalar product. We call it elliptical inner product or B-inner product.
The real vector space Rn equipped with the elliptical inner product will be represented by
Rna1,a2,...,an or R

n
B. Note that the scalar product B (u,v) can be written as B (u,w) = utΩw

where associated matrix is

Ω =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . . 0

0 0 · · · an

 . (1)

4



The number
√

det Ω will be called "constant of the scalar product" and denoted by ∆ in the
rest of the paper. Two vectors u and w are called B-orthogonal or elliptically orthogonal
vectors if B (u,w) = 0. In addition, if their norms are 1, then they are called B-orthonormal
vectors. If {u1,u2, ...,un} is an B-orthonormal base of Rna1,a2,...,an , then det (u1,u2, ...,un) =
∆−1. The cosine of the angle between two vectors u and w is defined as,

cosθ =
B (u,w)

‖u‖B ‖w‖B
where θ is compatible with the parameters of the angular parametric equations of ellipse or
ellipsoid.

Let B be a non degenerate scalar product, Ω the associated matrix of B, and R ∈ Rn×n
is any matrix.

i) If B (Ru, Rw) = B (u,w) for all vectors u,w ∈ Rn, then R is called a B-orthogonal
matrix. It means that orthogonal matrices preserve the norm of vectors and satisfy the matrix
equality RtΩR = Ω. Also, all rows (or columns) are B-orthogonal to each other. We denote
the set of B-orthogonal matrices by OB (n). That is,

OB (n) = {R ∈ Rn×n : RtΩR = Ω and detR = ±1}.
OB (n) is a subgroup of GlB (n) . It is sometimes called the isometry group of Rn associated
with scalar product B. The determinant of a B-orthogonal matrix can be either −1 or 1. If
detR = 1, then we call it a B-rotation matrix or an elliptical rotation matrix. If detR = −1,
we call it an elliptical reflection matrix. Although the set OB (n) is not a linear subspace
of Rn×n, it is a Lie group. The isometry group for the bilinear or sesquilinear forms can be
found in [8]. The set of the B-rotation matrices of Rn can be expressed as follows:

SOB (n) = {R ∈ Rn×n : RtΩR = Ω and detR = 1}.
SOB (n) is a subgroup of OB (n) .

ii) If B (Su,w) = B (u, Sw) for all vectors u,w ∈ Rn, then S is called a B-symmetric
matrix. It satisfies StΩ = ΩS. The set of B-symmetric matrices, defined by

J =
{
S ∈ Rn×n : B (Su,w) = B (u, Sw) for all u,w ∈ Rn

}
is a Jordan algebra [8]. It is a subspace of the vector space of real n × n matrices, with
dimension n (n+ 1) /2. Any B-symmetric matrix in Rna1,a2,...,an can be defined as

S =

[
∆aij
ai

]
n×n

(2)

where aij = aji and aij ∈ R.
iii) If B (Tu,w) = −B (u, Tw) for all vectors u,w ∈ Rn, then T is called a B-skew-

symmetric matrix. Also, T tΩ = −ΩT . The set of B-skew symmetric matrices, defined by
L =

{
T ∈ Rn×n : B (Tu,w) = −B (u, Tw) for all u,w ∈ V

}
is a Lie algebra [8]. It is a subspace of the vector space of real n×n matrices, with dimension
n(n− 1)/2, as well. Any B-skew-symmetric matrix in Rna1,a2,...,an can be defined as,

T = [tij ]n×n with tij =


∆aij
ai

i > j

−∆aij
ai

i < j

0 i = j

(3)

where aij = aji and aij ∈ R.

5



For example, in the scalar product space R3
a1,a2,a3 , the symmetric and skew symmetric ma-

trices are

S = ∆

 a11/a1 x/a1 y/a1

x/a2 a22/a2 z/a2

y/a3 z/a3 a33/a3

 and T = ∆

 0 x/a1 y/a1

−x/a2 0 z/a2

−y/a3 −z/a3 0

 .
Note that, even if we omit the scalar product constant∆ in S or T, they will still be symmetric
or skew symmetric matrix, respectively. But then, we cannot generate elliptical rotation
matrices using the Rodrigues and Cayley formulas. So, we will keep the constant ∆.
Elliptical Vector Product

Now, we define the elliptical vector product, which is related to elliptical inner product.
Let ui = (ui1, ui2, ..., uin) ∈ Rn for i = 1, 2, ..., n−1 and e1, e2, ..., en be standard unit vectors
for B. Then, the elliptical vector product in Rna1,a2,...,an is defined as,

Rna1,a2,...,an × R
n
a1,a2,...,an × · · · × R

n
a1,a2,...,an → Rna1,a2,...,an ,

(u1,u2, ...,un)→ V (u1 × u2 × u3 × · · · × un−1)

V (u1 × u2 × u3 × · · · × un−1) = ∆ det


e1/a1 e2/a2 e3/a3 · · · en/an
u11 u12 u13 · · · u1n

u21 u22 u23 · · · u2n
...

...
...

...
...

u(n−1)1 u(n−1)2 u(n−1)3 · · · u(n−1)n

 (4)

The vector V (u1 × u2 × · · · × un−1) is B-orthogonal to each of the vectors
u1,u2,u3, ...,un−1 geometrically. As a special case, the 3-dimensional elliptical vec-
tor product of u1 and u2 is defined as

V (u1 × u2) = ∆ det

 e1/a1 e2/a2 e3/a3

u11 u12 u13

u21 u22 u23


for the scalar product space R3

a1,a2,a3 , where ∆ =
√
a1a2a3.

The ellipsoid a1x
2 + a2y

2 + a3z
2 = 1, ai ∈ R+ is the unit sphere for this space. The end

point any unit vector in R3
a1,a2,a3 falls on the ellipsoid. If u1 and u2 are unit vectors in

R3
a1,a2,a3 , then V (u1 × u2) is also unit vector and it is elliptically orthogonal to u1 and u2.
The standard vector product is a special case of the elliptical vector product. That is, if we
take a1 = a2 = a3 = 1, we end up standard vector product, standard inner product and,
standard orthogonality in the three dimensional Euclidean space.

3 3D Elliptical Rotations

Let’s take the ellipsoid a1x
2 + a2y

2 + a3z
2 = 1 where ai ∈ R+. The scalar product for

this ellipsoid is
B (u,w) = a1u1w1 + a2u2w2 + a3u1w3,

for u = (u1, u2, u3) and v = (v1, v2, v3) . Also, the vector product is

6



V (u× v)=∆ det

 e1/a1 e2/a2 e3/a3

u1 u2 u3

v1 v2 v3

=∆

 0 −u3/a1 u2/a1

u3/a2 0 −u1/a2

−u2/a3 u1/a3 0

 v1

v2

v3

=T (vt)
where ∆ =

√
a1a2a3. The matrix

T = ∆

 0 −u3/a1 u2/a1

u3/a2 0 −u1/a2

−u2/a3 u1/a3 0

 (5)

is skew symmetric in R3
a1,a2,a3 . That is, T

tΩ = −ΩT . So, the vector product in R3
a1,a2,a3 can be

viewed as a linear transformation, which corresponds to multiplication by a skew symmetric
matrix. The characteristic polynomial of T is, P (x) = x3 + ‖u‖2 x whose eigenvalues are
x1 = 0 and x2,3 = ±‖u‖ i. According to characteristic polynomial T 3 + ‖u‖2 T = 0. So, if
we take a unit vector u ∈ R3

a1,a2,a3 , we get T
3 = −T and we can use Rodrigues and Cayley

formulas. (See the paper "An Alternative Approach tor elliptical motion" published
online in "Advances in Applied Clifford Algebras.")

Example 1 A parametrization of the ellipsoid
x2

4
+
y2

4
+
z2

9
= 1 is

α (θ, β) = (2 cos θ cosβ, 2 cos θ sinβ, 3 sin θ)

where θ ∈ [0, π) and β ∈ [0, 2π). Let’s take the points

A=α (30◦, 30◦)=
(

3/2,
√

3/2, 3/2
)
and B=α (120◦, 30◦)=

(
−
√

3/2,−1/2, 3
√

3/2
)

on the ellipsoid. Let’s find the rotation matrix which is rotate the point A to B elliptically.
We have a1 = a2 = 1/4 and a3 = 1/9. So, ∆ = 1/12. First, using the vector product of
x =
−→
OA and y =

−−→
OB in R3

1/4,1/4,1/9, we find the rotation axis u.

V (x× y) =
1

12

∣∣∣∣∣∣∣
4i 4j 9k

3/2
√

3/2 3/2

−
√

3/2 −1

2
3
√

3/2

∣∣∣∣∣∣∣ =
(

1,−
√

3, 0
)
.

7



Since V (x× y) is unit vector in R3
1/4,1/4,1/9, we get u = (1,−

√
3, 0). Thus, we can obtain the

elliptical rotation matrix

Ruθ T (θ) =
1

12

 9 cos θ + 3 3
√

3 (cos θ − 1) −4
√

3 sin θ

3
√

3 (cos θ − 1) 3 cos θ + 9 −4 sin θ

9
√

3 sin θ 9 sin θ 12 cos θ


by using Rodrigues rotation formula (see [1]). This matrix describes an elliptical rotation on
a great ellipse such that it is intersection of the ellipsoid and the plane passing through the
origin and B-orthogonal to u. It can be easily found that equation of the plane is x =

√
3y.

So, Ruθ represents an elliptical rotation over the the great ellipse is y
2 +

1

9
z2 = 1, y =

√
3x.

Also, the elliptical rotation angle is π/2, since cos θ = B (x,y) = 0. Thus, we find

Ruπ/2 =
1

12

 3 −3
√

3 −4
√

3

−3
√

3 9 −4

9
√

3 9 0

 . (6)

The matrix (6), rotates the point A to the point B elliptically over the great ellipse
x2

2
+
z2

9
= 1,

y = x.

4 Elliptic Quaternions

Elliptic Quaternions for a given ellipsoid
To get an elliptical rotation matrix, first we define the set of elliptic quaternions suitable

for the ellipsoid
a1x

2 + a2y
2 + a3z

2 = 1.

Let’s take four basic elements {1, i, j,k} satisfying the equalities

i2 = −a1, j2 = −a2, k2 = −a3

and

ij =
∆

a3
k = −ji, jk =

∆

a1
i = −kj, ki =

∆

a2
j = −ik

where a1, a2, a3 ∈ R+ and ∆ =
√
a1a2a3.

The set of elliptic quaternions will be denoted by Ha1,a2,a3 . This set is an associative, non-
commutative division ring with our basic elements {1, i, j,k}. If we take a1 = a2 = a3 = 1,
we get the usual quaternion algebra. The elliptic quaternion product table is given below.

1 i j k

1 1 i j k

i i −a1 ∆k/a3 −∆j/a2

j j −∆k/a3 −a2 ∆i/a1

k k ∆j/a2 −∆i/a1 −a3

8



For each ellipsoid, we define a quaternion product using scalar product and vector product
such that the ellipsoid is a unit sphere for this scalar product space. Now, let’s define the
quaternion product for the ellipsoid a1x

2 + a2y
2 + a3z

2 = 1.

Elliptic Quaternion Product
The elliptic quaternion product of two quaternions p = p0 + p1i + p2j + p3k and

q = q0 + q1i+ q2j+ q3k is defined as

p0q0 − B (Vp,Vq) + p0Vq + q0Vp + V (Vp ×Vq) (7)

where

B (Vp,Vq) = a1p1q1 + a2p2q2 + a3p3q3,

and

V (Vp ×Vq)=∆ det

 e1/a1 e2/a2 e3/a3

p1 p2 p3

q1 q2 q3

=∆

 0 −p3/a1 p2/a1

p3/a2 0 −p1/a2

−p2/a3 p1/a3 0

 q1

q2

q3


are the elliptical scalar product and the elliptical vector product for a1x

2 +a2y
2 +a3z

2 = 1,
respectively. Here, ∆ is equal to

√
a1a2a3.

If p and q are pure, then

pq = −B (Vp,Vq) + V (Vp ×Vq)

= − (a1p1q1 + a2p2q2 + a3p3q3) + ∆

∣∣∣∣∣∣
i/a1 j/a2 k/a3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣ .
The elliptic quaternion product for Ha1,a2,a3 can be expressed as (pq)T = Fpq

T where,

Fp (∆, a1, a2, a3, p0, p1, p2, p3) =



p0 −a1p1 −a2p2 −a3p3

p1 p0 −p3∆

a1

p2∆

a1

p2
p3∆

a2
p0 −p1∆

a2

p3 −p2∆

a3

p1∆

a3
p0


and q =


q0

q1

q2

q3

 .

For example, let p, q ∈ H2,2,1. Then, the elliptic quaternion product of p and q defined is

pq =


p0 −2p1 −2p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −2p2 2p1 p0



q0

q1

q2

q3

 .
For p = 1 + 2i+ 3j+ 4k and q = 2 + 4i+ j+ 3k, we get pq = (−32, 13, 17,−9) . This can also
be calculated using the product table

1 i j k

1 1 i j k

i i −2 2k −j
j j −2k −2 i

k k j −i −1

.
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Example 2 Let’s define the set of elliptical quaternions and the elliptical quaternion product

for the ellipsoid (E) :
x2

2
+
y2

2
+
z2

9
= 1.

Since, a1 =
1

2
, a2 =

1

2
and a3 =

1

9
, we get

∆ =
√
a1a2a3 =

1

6
.

So, the set of elliptical quaternion for (E) is,

H1/2,1/2,1/9 =

{
q = q0 + q1i+ q2j+ q3k : i2 = −1

2
, j2 = −1

2
, k2 = −1

9
, ijk =− 1

6

}
.

Using the scalar product an vector product

B (Vp,Vq) =
1

2
p1q1 +

1

2
p2q2 +

1

9
p3q3

and

V (Vp ×Vq) =
1

6

 0 −2p3 2p2

2p3 0 −2p1

−9p2 9p1 0

 q1

q2

q3


for the ellipsoid (E) :

x2

2
+
y2

2
+
z2

9
= 1, the elliptic quaternion product of the quaternions

p = p0 + p1i+ p2j+ p3k and q = q0 + q1i+ q2j+ q3k

is defined as

pq =


p0q0 − 1

2p1q1 − 1
2p2q2 − 1

9p3q3

p0q1 + p1q0 + 1
3p2q3 − 1

3p3q2

p0q2 + p2q0 − 1
3p1q3 + 1

3p3q1

p0q3 + 3
2p1q2 − 3

2p2q1 + q0p3


or

(pq)T = FqT

where

Fp

(
1

6
,
1

2
,
1

2
,
1

9
, p0, p1, p2, p3

)
=


p0 −p1/2 −p2/2 −p3/9
p1 p0 −p3/3 p2/3
p2 p3/3 p0 −p1/3
p3 −3p2/2 3p1/2 p0



q0

q1

q2

q3

 and qT =


q0

q1

q2

q3

 .
Let’s find product of the quaternions p = 1 + 2i+ 3j+ 6k and q = 3 + 2i+ 2j+ 3k using the

elliptical quaternion product defined for the ellipsoid (E) :
x2

2
+
y2

2
+
z2

9
= 1.

Fp

(
1

6
,
1

2
,
1

2
,
1

9
, 1, 2, 3, 6

)
qT =


1 −1 −3

2
−2

3
2 1 −2 1

3 2 1 −2

3

6 −9

2
3 1




3
2
2
3

 =


−4
7
13
18

 .
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Clifford Algebra and Elliptic Quaternions
Remember that the algebra is formed by a vector space V equipped with a quadratic form Q
with the following equalities

v2 = Q (v) ;

uv + vu = 2BQ (u,v)

is called a Clifford algebra and is denoted by C` (V, Q) . If {e1, ..., en} is a base for an n-
dimensional vector space V, then C` (V, Q) is formed by the multivectors

{1} ∪ {ei1ei2 ...eik : 1 ≤ i1 ≤ ... ≤ ik ≤ n, 1 ≤ k ≤ n}

with dim (C` (V, Q)) = 2n. Since the Clifford product of two even multivectors is an even
multivector, they define an even subalgebra of C` (V, Q). The even subalgebra of an n-
dimensional Clifford algebra is isomorphic to a Clifford algebra of (n − 1) dimensions and
it is denoted by C`+ (V, Q) . The Hamiltonian quaternion algebra H is isomorphic with
the even subalgebra C`+3,0 = C`

(
R3, Q = x2

1 + x2
2 + x2

3

)
by {1, e2e3 → j, e1e3 → k, e1e2 →

i} and the split quaternion algebra Ĥ is isomorphic with the even subalgebra C`+2,1 =

C`
(
R3

1, Q = −x2
1 + x2

2 + x2
3

)
by {1, e2e3 → i, e3e1 → k, e1e2 → j} [15]. Similarly, the elliptic

quaternion algebra is an even subalgebra of the Clifford algebra

C`
(
R3
)

=
{
q = q0 + e1q1 + e2q2 + e3q3 : e2

1 = a1, e
2
2 = a2, e

2
3 = a3, eiej + ejei = 0

}
associated with the nondegenerate quadratic form Q (x) = a1x

2
1 + a2x

2
2 + a3x

2
3 and is de-

noted by C`+
(
R3, a1x

2
1 + a2x

2
2 + a3x

2
3

)
, or shortly C`+

(
R3
a1,a2,a3

)
. Ha1,a2,a3 is isomorphic to

C`+
(
R3
a1,a2,a3

)
with

{1, a1

∆
e2e3 → i,

a2

∆
e1e3 → j,

a3

∆
e1e2 → k}.

For the quadratic form Q = a1x
2
1 + a1x

2
2 + a1x

2
3, recall that the elliptical inner product can

be obtained by using the equality

BQ (x,y) =
1

2
[Q (x+ y)−Q (x)−Q (y)] .

So, we get BQ (x,y) = a1x1y1 +a2x2y2 +a3x3y3 for x = (x1, x2, x3) and y = (y1, y2, y3) . Thus,
we can construct an elliptic quaternion algebra for any elliptical inner product space.
Conjugate, norm and inverse of an elliptic quaternion q = q0 + q1i+ q2j+ q3k can be
defined similar to usual quaternions :

q = q0 − q1i− q2j− q3k,

‖q‖ =
√
qq =

√
qq =

√
q2

0 + a1q2
1 + a2q2

2 + a3q2
3,

q−1 =
q

‖q‖2
.

Also, each elliptic quaternion q = q0 + q1i+ q2j+ q3k can be written in the form

q0 = ‖q‖ (cos θ + ε0 sin θ)

where
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cos θ =
q0

‖q‖ and sin θ =

√
a1q2

1 + a2q2
2 + a3q2

3

‖q‖ .

Here, ε0 =
(q1, q2, q3)√

a1q2
1 + a2q2

2 + a3q2
3

is a unit vector in the scalar product space R3
a1,a2,a3

satisfying the equality ε2
0 = −1. It is called the axis of the rotation. For example, if

q = 1 + 2i+ j+ 5k ∈ H2,2,1, then ‖q‖ =
√

12 + 2 · 22 + 2 · 12 + 1 · 52 = 6 and we can write

q =
1

6
+

√
35

6

(2, 1, 5)√
35

= cos θ +
(2, 1, 5)√

35
sin θ

where ε0 =
1√
35

(2, 1, 5) is a unit vector in R3
2,2,1 with ε

2
0 = −1.

Theorem 1 Each a unit elliptic quaternion represents an elliptical rotation on the an ellip-
soid. If

q = q0 + q1i+ q2j+ q3k = cos θ + ε0 sin θ ∈ Ha1,a2,a3
is a unit elliptic quaternion, then the linear map Rθ (v) = qvq−1 gives an elliptical rotation
through the elliptical angle 2θ, about the axis ε0, where v ∈ R3. The elliptical rotation matrix
to corresponding to the quaternion q is

Rqθ =


q2

0+a1q
2
1 − a2q

2
2 − a3q

2
3 2a2q1q2 − 2

q0q3∆

a1
2a3q1q3 + 2

q0q2∆

a1

2a1q1q2 + 2
q0q3∆

a2
q2

0 − a1q
2
1+a2q

2
2 − a3q

2
3 2a3q2q3 − 2

q0q1∆

a2

2a1q1q3 − 2
q0q2∆

a3
2a2q2q3 + 2

q0q1∆

a3
q2

0 − a1q
2
1 − a2q

2
2+a3q

2
3

 (8)

for the ellipsoid a1x
2 + a2y

2 + a3z
2 = 1.

Proof. It can be seen that Rθ is a linear transformation and preserves the norm. Using the
equalities,

Rθ (i) =
(
a1q

2
1q

2
0−q2

2a2−q2
3a3

)
i+ 2

(
a1q1q2+q0q3

√
a1a3

a2

)
j+2

(
q1q3a1−q0q2

√
a1a2

a3

)
k,

Rθ (j) = 2

(
a2q1q2−q0q3

√
a2a3

a1

)
i+
(
a2q

2
2 + q2

0−q2
1a1−q2

3a3

)
j+2

(
a2q2q3+q0q1

√
a1a2

a3

)
k,

Rθ (k) = 2

(
a3q1q3+q0q2

√
a2a3

a1

)
i+2

(
a3q2q3−q0q1

√
a1a3

a2

)
j+
(
a3q

2
3 + q2

0−q2
1a1−q2

2a2

)
k,

we can obtain (8). So, the rotation matrix (8) is an elliptical rotation matrix on the ellipsoid
a1x

2 + a2y
2 + a3z

2 = 1. That is, the equalities detRθ = 1 and RtθΩRθ = Ω are satisfied.
Also, note that, if we take a1 = a2 = a3 = 1, the standard rotation matrix is obtained. Now,
let’s choose an orthonormal set {ε0, ε1, ε2} satisfying the equalities

V (ε0 × ε1) = ε2, V (ε2 × ε0) = ε1, V (ε1 × ε2) = ε0.

If ε is a vector in the plane of the ε0 and ε1, we can write it as

ε = cosαε0 + sinαε1.
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To compute Rqθ (ε) = qεq−1, let’s find how ε0 and ε1 change under the transformation R
q
θ.

Since Vq is parallel to ε0, we have qε0 = ε0q by (4) and Rq (ε0) = qε0q
−1 = ε0qq

−1 = ε0.
So, ε0 is not changed under the transformation R

q
θ. It means that ε0 is the rotation axis. On

the other hand,

Rq (ε1) = qε1q
−1

= (cos θ + ε0 sin θ) ε1 (cos θ − ε0 sin θ)

= ε1 cos2 θ − cos θ sin θ (ε1ε0) + cos θ sin θ (ε0ε1)− (ε0ε1) ε0 sin2 θ.

Since we know that ε1ε0 = V (ε1 × ε0) = −V (ε0 × ε1) = −ε0ε1 = −ε2 for orthogonal, pure
quaternions, we obtain

Rq (ε1) = ε1 cos2 θ + (ε1ε0) ε0 sin2 θ + 2ε2 cos θ sin θ

= ε1 cos2 θ + ε1ε
2
0 sin2 θ + 2ε2 cos θ sin θ

= ε1 cos 2θ + ε2 sin 2θ

That is, ε is rotated through the elliptical angle 2θ about ε0 by the transformation Rq(ε).

Corollary 1 All elliptical rotations on an ellipsoid can be represented by elliptic quaternions
which is defined for that ellipsoid.

The matrix (8) is only rotation matrix in the scalar product space R3
a1,a2,a3 and shows

rotations along an ellipse on the a1x
2 + a2y

2 + a3z
2 = λ, λ ∈ R+. Here, notice that the

ellipsoid a1x
2 + a2y

2 + a3z
2 = 1 is unit sphere of the scalar product space R3

a1,a2,a3 . So, R
q
θ

rotates a vector elliptically on the ellipsoid a1x
2 +a2y

2 +a3z
2 = 1 or similar to this ellipsoid.

Moreover, the matrix Rqθ depends to elliptical inner product and elliptical vector product and
we can write as Rqθ ∈ SOB (n) or Rqθ ∈ SOa1,a2,a3 (n) where q ∈ Ha1,a2,a3 . We must always
use proper elliptic quaternion set and product corresponding to a predetermined ellipsoid.

Example 3 Let’s find the general elliptical rotation matrix for the ellipsoid 2x2+2y2+z2 = 1.
Using (8), we obtain,

Rqθ =

 q2
0 + 2q2

1 − 2q2
2 − q2

3 4q1q2 − 2q0q3 2q0q2 + 2q1q3

2q0q3 + 4q1q2 q2
0 − 2q2

1 + 2q2
2 − q2

3 2q2q3 − 2q0q1

4q1q3 − 4q0q2 4q0q1 + 4q2q3 q2
0 − 2q2

1 − 2q2
2 + q2

3

 .
Here, detRθ =

(
q2

0 + 2q2
1 + 2q2

2 + q2
3

)3
= 1 and RtθΩR = Ω where Ω = diag (2, 2, 1) . For ex-

ample, the unit quaternion q = (0, 1/2, 1/2, 0) represents an elliptical rotation on the ellipsoid
2x2 +2y2 +z2 = 1 through the elliptical angle π, about the axis (1/2, 1/2, 0) . And the elliptical
rotation matrix is

Rqπ =

 0 1 0
1 0 0
0 0 −1

 .
Example 4 Let’s find the elliptical rotation matrix which is rotate the point A

(
3/2,
√

3/2, 3/2
)

to B
(
−
√

3/2,−1/2, 3
√

3/2
)
elliptically on the ellipsoid

x2

4
+
y2

4
+
z2

9
= 1.

Here, a1 = a2 = 1/4 and a3 = 1/9. So, ∆ = 1/12. In example 1, we found the unit rotation
axis as ε0 =

(
1,−
√

3, 0
)
using the vector product of x =

−→
OA and y =

−−→
OB in R3

1/4,1/4,1/9.
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Also, rotation angle is π/2 since cos θ =
B (x,y)

‖x‖B ‖y‖B
= 0. So, the unit elliptic quaternion

representing the elliptical rotation matrix which is rotate A to B is

q = cos 45◦ + ε0 sin 45◦ =

√
2

2
+

√
2

2
i−
√

6

2
j.

Therefore, using above Theorem, we find

Rqπ/2 =
1

12

 3 −3
√

3 −4
√

3

−3
√

3 9 −4

9
√

3 9 0

 .
This matrix is same as the rotation matrix obtained using Rodrigues formula in Example 1

Composition of Elliptical Rotations
Let p and q be two unit elliptic quaternions of the same kind. That is, let p, q ∈ Ha1,a2,a3 . In
this case, Rpθ1 and R

q
θ2
are two elliptical rotation matrices on the scalar product space R3

a1,a2,a3 .

That is Rpθ1 and R
q
θ2
rotate a vector elliptically on the ellipsoid a1x

2 + a2y
2 + a3z

2 = 1. The
composition of these rotations can be expressed by the elliptic quaternion product qp. The axis
and the elliptical angle of the composite rotation is given by the product qp. Let Rpθ1 (u) = v
and Rqθ2 (v) = w. Then

w =Rqθ2 (v) = Rqθ2

(
Rpθ1 (u)

)
= qRpθ1 (u) q−1 = qpup−1q−1 = (qp)u (qp)−1 = Rqpθ3 (u) .

It means that Rqθ2R
p
θ1

=Rqpθ3 . As an example, let’s take the unit elliptic quaternions q =(
0, 1

2 ,
1
2 , 0
)
and p =

(
1
6 ,

2
6 ,

1
6 ,

5
6

)
. That is, p, q ∈ H2,2,1. The scalar and the vector products are

B (x, y) = a1x1x2 + a2y1y2 + a3z1z2,

V (x× y) =

(
∆

a1
(y1z2 − y2z1) ,

∆

a2
(−x1z2 + x2z1) ,

∆

a3
(x1y2 − x2y1)

)
respectively. The elliptic quaternion product of the quaternions p = p0 + p1i+ p2j+ p3k and
q = q0 + q1i+ q2j+ q3k is defined as

pq = p0q0 − B (Vp,Vq) + p0Vq + q0Vp + V (Vp ×Vq) .

So, qp can be found to be qp =
(
−1

2 ,
1
2 ,−

1
3 ,−

1
6

)
∈ H2,2,1.

Using (8), we can find as

Rq =

 0 1 0
1 0 0
0 0 −1

 , Rp =

 −1/2 −1/18 11/18
1/2 −5/6 1/6
1 7/9 4/9

 and
Rqp =

 1/2 −5/6 1/6
−1/2 −1/18 11/18
−1 −7/9 −4/9

 .
It can be seen that the matrix equality RqRp = Rqp is satisfied.

Remark 1 If p and q are two unit elliptic quaternions of different kinds, namely p ∈ Ha1,a2,a3
and q ∈ Hb1,b2,b3 , then the composition of corresponding rotations cannot be expressed by
the elliptic quaternion product. Because, for each quaternion, the scalar product space is
different, hence the elliptic quaternion product is also different. Rpθ1 and Rqθ2represent a
rotations on the ellipsoids a1x

2 + a2y
2 + a3z

2 = 1 and b1x2 + b2y
2 + b3z

2 = 1 respectively and
the composition of the elliptical rotations on two different ellipsoids cannot be expressed by
the elliptical quaternion product of two elliptical quaternions of different kinds.
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